rd2l_prediction / app.py
nick-leland's picture
Evaluation to current
b172c75
raw
history blame
9.09 kB
import gradio as gr
import pandas as pd
import numpy as np
import onnxruntime as ort
import sys
from pathlib import Path
sys.path.append("rd2l_pred")
from feature_engineering import heroes, hero_information
# Define expected columns
EXPECTED_COLUMNS = ['mmr', 'p1', 'p2', 'p3', 'p4', 'p5', 'count', 'mean', 'std', 'min', 'max', 'sum',
'total_games_played', 'total_winrate']
# Add games columns
games_ids = list(range(1, 24)) + [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,
75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,
92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106,
107, 108, 109, 110, 111, 112, 113, 114, 119, 120, 121, 123, 126,
128, 129, 131, 135, 136, 137, 138, 145]
EXPECTED_COLUMNS.extend([f'games_{i}' for i in games_ids])
EXPECTED_COLUMNS.extend([f'winrate_{i}' for i in games_ids])
def load_reference_data(player_id):
"""Load reference prediction data for comparison"""
try:
ref_df = pd.read_csv(f"{player_id}.csv")
return ref_df.iloc[-1][f"{player_id}_S34"]
except Exception as e:
print(f"Could not load reference data: {e}")
return None
def prepare_single_player_data(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5):
"""Creates a DataFrame in the expected format for the model"""
try:
# Extract player_id from URL if needed
player_id = user_id.split("/")[-1] if "/" in user_id else user_id
# Create initial data dictionary with zeros for all columns
data = {col: 0 for col in EXPECTED_COLUMNS}
# Fill in the basic features
data.update({
'mmr': float(mmr),
'p1': int(comf_1),
'p2': int(comf_2),
'p3': int(comf_3),
'p4': int(comf_4),
'p5': int(comf_5),
})
# Get hero statistics using OpenDota API
hero_stats = hero_information(player_id)
# Add hero statistics
if hero_stats is not None:
data['total_games_played'] = hero_stats.get('total_games_played', 0)
data['total_winrate'] = hero_stats.get('total_winrate', 0)
# Fill in the games and winrate columns from hero_stats
for key, value in hero_stats.items():
if key in EXPECTED_COLUMNS:
data[key] = value
# Get statistics from league data
try:
captains_df = pd.read_csv("S34 Draft Sheet Captains.csv")
bucks_stats = captains_df["Buck's Bucks"].describe()
cents_stats = captains_df["Crub Cents"].describe()
# Print stats for debugging
print("\nLeague Money Statistics:")
print("Buck's Bucks stats:", bucks_stats)
print("Crub Cents stats:", cents_stats)
# Combine stats from both currencies
combined_stats = {
'count': bucks_stats['count'] + cents_stats['count'],
'mean': (bucks_stats['mean'] + cents_stats['mean']) / 2,
'std': (bucks_stats['std'] + cents_stats['std']) / 2,
'min': min(bucks_stats['min'], cents_stats['min']),
'max': max(bucks_stats['max'], cents_stats['max']),
'sum': bucks_stats['count'] * bucks_stats['mean'] + cents_stats['count'] * cents_stats['mean']
}
print("Combined stats:", combined_stats)
data.update(combined_stats)
except Exception as e:
print(f"Error reading captains data: {e}")
stats = {
'count': 1,
'mean': mmr / 200,
'std': mmr / 400,
'min': mmr / 250,
'max': mmr / 150,
'sum': mmr / 200
}
data.update(stats)
# Convert to DataFrame
df = pd.DataFrame([data])
# Ensure columns are in correct order
df = df[EXPECTED_COLUMNS]
print(f"DataFrame shape: {df.shape}")
print("Missing columns:", set(EXPECTED_COLUMNS) - set(df.columns))
# Print key feature values for debugging
print("\nKey feature values:")
print(f"MMR: {df['mmr'].iloc[0]}")
print(f"Position comfort: {df[['p1', 'p2', 'p3', 'p4', 'p5']].iloc[0].tolist()}")
print(f"Money stats: {df[['count', 'mean', 'std', 'min', 'max', 'sum']].iloc[0].tolist()}")
print(f"Total games: {df['total_games_played'].iloc[0]}")
print(f"Total winrate: {df['total_winrate'].iloc[0]}")
return df
except Exception as e:
print(f"Error in data preparation: {e}")
raise e
def predict_cost(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5):
"""Main prediction function for Gradio interface"""
try:
# Extract player_id for reference data
player_id = user_id.split("/")[-1] if "/" in user_id else user_id
reference_cost = load_reference_data(player_id)
# Prepare the player data
processed_data = prepare_single_player_data(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5)
# Load and use the model
model_path = Path("model/rd2l_forest.onnx")
if not model_path.exists():
return f"Model file not found at: {model_path}"
session = ort.InferenceSession(str(model_path))
# Debug information
print("\nModel Input Information:")
print("Processed data shape:", processed_data.shape)
# Make prediction
input_name = session.get_inputs()[0].name
prediction = session.run(None, {input_name: processed_data.values.astype(np.float32)})[0]
predicted_cost = round(float(prediction[0]), 2)
hero_stats = processed_data.iloc[0]
total_games = hero_stats.get('total_games_played', 'N/A')
total_winrate = hero_stats.get('total_winrate', 'N/A')
comparison = ""
if reference_cost is not None:
diff = abs(predicted_cost - reference_cost)
comparison = f"""
Reference Cost: {reference_cost}
Difference: {diff:.2f} ({(diff/reference_cost*100):.1f}% {'higher' if predicted_cost > reference_cost else 'lower'})"""
return f"""Predicted Cost: {predicted_cost}{comparison}
Player Details:
- MMR: {mmr}
- Position Comfort:
* Pos 1: {comf_1}
* Pos 2: {comf_2}
* Pos 3: {comf_3}
* Pos 4: {comf_4}
* Pos 5: {comf_5}
Player Statistics:
- Total Games: {total_games}
- Overall Winrate: {total_winrate:.1%} if isinstance(total_winrate, float) else 'N/A'
Note: This prediction is based on historical data and player statistics from OpenDota."""
except Exception as e:
return f"Error in prediction pipeline: {str(e)}\n\nDebug info:\n{type(e).__name__}: {str(e)}"
# Create Gradio interface
demo = gr.Interface(
fn=predict_cost,
inputs=[
gr.Textbox(label="Player ID or Link to OpenDota/Dotabuff",
placeholder="Enter player ID or full profile URL"),
gr.Number(label="MMR", value=3000),
gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 1)"),
gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 2)"),
gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 3)"),
gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 4)"),
gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 5)")
],
examples=[
["https://www.dotabuff.com/players/188649776", 6812, 5, 5, 4, 2, 1]
],
outputs=gr.Textbox(label="Prediction Results"),
title="RD2L Player Cost Predictor",
description="""This tool predicts the auction cost for RD2L players based on their MMR,
position comfort levels, and historical performance data from OpenDota.
Enter a player's OpenDota ID or profile URL along with their current stats
to get a predicted cost.""",
article="""### How it works
- The predictor uses machine learning trained on historical RD2L draft data
- Player statistics are fetched from OpenDota API
- Position comfort levels range from 1 (least comfortable) to 5 (most comfortable)
- Predictions are based on both current stats and historical performance
### Notes
- MMR should be the player's current solo MMR
- Position comfort should reflect actual role experience
- Predictions are estimates and may vary from actual draft results"""
)
if __name__ == "__main__":
demo.launch()