File size: 6,244 Bytes
53715b3
7409f0d
301d4ae
 
d804135
301d4ae
d804135
 
7409f0d
53715b3
e55fb20
 
 
 
 
 
 
 
51f2947
e55fb20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
301d4ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e55fb20
 
 
 
 
 
301d4ae
 
 
 
e55fb20
 
 
 
 
 
 
301d4ae
 
 
 
 
 
 
 
e55fb20
 
 
 
 
 
301d4ae
 
 
 
 
 
e55fb20
 
 
 
 
 
 
 
 
 
 
301d4ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e55fb20
301d4ae
 
 
 
 
 
 
 
 
 
 
 
 
 
e55fb20
 
 
301d4ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e55fb20
 
 
301d4ae
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import gradio as gr
import pandas as pd
import numpy as np
import onnxruntime as ort
import sys
from pathlib import Path
sys.path.append("rd2l_pred")
from training_data_prep import list_format, modification, league_money, df_gen
from feature_engineering import heroes, hero_information

# Global variables for model and feature columns
MODEL = None
FEATURE_COLUMNS = None

def load_model():
    """Load the ONNX model and get input features"""
    global MODEL, FEATURE_COLUMNS
    try:
        model_path = Path("model/rd2l_forest.onnx")
        if not model_path.exists():
            return "Model file not found at: " + str(model_path)
        
        MODEL = ort.InferenceSession(str(model_path))
        
        # Load feature columns from a saved reference - you'll need to create this
        try:
            FEATURE_COLUMNS = pd.read_csv("model/feature_columns.csv")["columns"].tolist()
        except:
            # Fallback to basic features if feature columns file not found
            FEATURE_COLUMNS = ["player_id", "mmr", "p1", "p2", "p3", "p4", "p5", 
                             "total_games_played", "total_winrate"]
        
        return "Model loaded successfully"
    except Exception as e:
        return f"Error loading model: {str(e)}"

def process_player_data(player_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5):
    """Process player data similar to training pipeline"""
    try:
        # Clean player ID from URL if needed
        if "/" in player_id:
            player_id = player_id.split("/")[-1]
            
        # Create initial player series
        player_data = {
            "player_id": player_id,
            "mmr": float(mmr),
            "p1": int(comf_1),
            "p2": int(comf_2),
            "p3": int(comf_3),
            "p4": int(comf_4),
            "p5": int(comf_5)
        }
        
        # Get hero statistics using OpenDota API
        try:
            hero_stats = hero_information(player_id)
            # Merge hero stats with player data
            player_data.update(hero_stats.to_dict())
        except Exception as e:
            print(f"Warning - Error fetching hero data: {str(e)}")
            # If hero stats fail, add placeholder values
            player_data.update({
                "total_games_played": 0,
                "total_winrate": 0.0
            })
            
        # Convert to DataFrame for consistency with training
        df = pd.DataFrame([player_data])
        
        # Ensure all required columns exist
        if FEATURE_COLUMNS:
            for col in FEATURE_COLUMNS:
                if col not in df.columns:
                    df[col] = 0
            # Reorder columns to match model input
            df = df[FEATURE_COLUMNS]
        
        return df
    except Exception as e:
        return f"Error processing player data: {str(e)}"

def predict_cost(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5):
    """Main prediction function for Gradio interface"""
    try:
        # Check if model is loaded
        if MODEL is None:
            result = load_model()
            if not result.startswith("Model loaded"):
                return result
        
        # Process input data
        processed_data = process_player_data(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5)
        
        if isinstance(processed_data, str):  # Error occurred
            return processed_data
        
        # Print debug information
        print("Processed data shape:", processed_data.shape)
        print("Processed data columns:", processed_data.columns.tolist())
        
        # Make prediction
        try:
            input_name = MODEL.get_inputs()[0].name
            prediction = MODEL.run(None, {input_name: processed_data.values.astype(np.float32)})[0]
            predicted_cost = round(float(prediction[0]), 2)
        except Exception as e:
            return f"Error during prediction: {str(e)}\nProcessed data shape: {processed_data.shape}"
        
        return f"""Predicted Cost: {predicted_cost}

Player Details:
- MMR: {mmr}
- Position Comfort:
  * Pos 1: {comf_1}
  * Pos 2: {comf_2}
  * Pos 3: {comf_3}
  * Pos 4: {comf_4}
  * Pos 5: {comf_5}

Note: This prediction is based on historical data and player statistics from OpenDota."""
        
    except Exception as e:
        return f"Error in prediction pipeline: {str(e)}"

# Create Gradio interface
demo = gr.Interface(
    fn=predict_cost,
    inputs=[
        gr.Textbox(label="Player ID or Link to OpenDota/Dotabuff",
                  placeholder="Enter player ID or full profile URL"),
        gr.Number(label="MMR", value=3000),
        gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 1)"),
        gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 2)"),
        gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 3)"),
        gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 4)"),
        gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 5)")
    ],
    examples=[
        ["https://www.dotabuff.com/players/188649776", 6812, 5, 5, 4, 2, 1]
    ],
    outputs=gr.Textbox(label="Prediction Results"),
    title="RD2L Player Cost Predictor",
    description="""This tool predicts the auction cost for RD2L players based on their MMR, 
                   position comfort levels, and historical performance data from OpenDota. 
                   Enter a player's OpenDota ID or profile URL along with their current stats 
                   to get a predicted cost.""",
    article="""### How it works
                - The predictor uses machine learning trained on historical RD2L draft data
                - Player statistics are fetched from OpenDota API
                - Position comfort levels range from 1 (least comfortable) to 5 (most comfortable)
                - Predictions are based on both current stats and historical performance
                
                ### Notes
                - MMR should be the player's current solo MMR
                - Position comfort should reflect actual role experience
                - Predictions are estimates and may vary from actual draft results"""
)

# Load model on startup
print(load_model())

if __name__ == "__main__":
    demo.launch()