File size: 4,628 Bytes
53715b3
7409f0d
301d4ae
 
d804135
301d4ae
d804135
 
7409f0d
53715b3
301d4ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import gradio as gr
import pandas as pd
import numpy as np
import onnxruntime as ort
import sys
from pathlib import Path
sys.path.append("rd2l_pred")
from training_data_prep import list_format, modification, league_money, df_gen
from feature_engineering import heroes, hero_information

# Load the ONNX model
model_path = Path("model/rd2l_predictor.onnx")
session = ort.InferenceSession(model_path)

def process_player_data(player_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5):
    """Process player data similar to training pipeline"""
    try:
        # Clean player ID from URL if needed
        if "/" in player_id:
            player_id = player_id.split("/")[-1]
            
        # Create initial player series
        player_data = {
            "player_id": player_id,
            "mmr": float(mmr),
            "p1": int(comf_1),
            "p2": int(comf_2),
            "p3": int(comf_3),
            "p4": int(comf_4),
            "p5": int(comf_5)
        }
        
        # Get hero statistics using OpenDota API
        try:
            hero_stats = hero_information(player_id)
            # Merge hero stats with player data
            player_data.update(hero_stats.to_dict())
        except Exception as e:
            return f"Error fetching hero data: {str(e)}"
            
        # Convert to DataFrame for consistency with training
        df = pd.DataFrame([player_data])
        
        # Ensure columns match training data
        required_columns = [col.name for col in session.get_inputs()[0].type.tensor_type.shape.dim]
        for col in required_columns:
            if col not in df.columns:
                df[col] = 0
                
        # Reorder columns to match model input
        df = df[required_columns]
        
        return df
    except Exception as e:
        return f"Error processing player data: {str(e)}"

def predict_cost(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5):
    """Main prediction function for Gradio interface"""
    try:
        # Process input data
        processed_data = process_player_data(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5)
        
        if isinstance(processed_data, str):  # Error occurred
            return processed_data
            
        # Make prediction
        input_name = session.get_inputs()[0].name
        prediction = session.run(None, {input_name: processed_data.values.astype(np.float32)})[0]
        
        # Format prediction
        predicted_cost = round(float(prediction[0]), 2)
        
        return f"""Predicted Cost: {predicted_cost}

Player Details:
- MMR: {mmr}
- Position Comfort:
  * Pos 1: {comf_1}
  * Pos 2: {comf_2}
  * Pos 3: {comf_3}
  * Pos 4: {comf_4}
  * Pos 5: {comf_5}

Note: This prediction is based on historical data and player statistics from OpenDota."""
        
    except Exception as e:
        return f"Error making prediction: {str(e)}"

# Create Gradio interface
demo = gr.Interface(
    fn=predict_cost,
    inputs=[
        gr.Textbox(label="Player ID or Link to OpenDota/Dotabuff",
                  placeholder="Enter player ID or full profile URL"),
        gr.Number(label="MMR", value=3000),
        gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 1)"),
        gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 2)"),
        gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 3)"),
        gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 4)"),
        gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 5)")
    ],
    outputs=gr.Textbox(label="Prediction Results"),
    title="RD2L Player Cost Predictor",
    description="""This tool predicts the auction cost for RD2L players based on their MMR, 
                   position comfort levels, and historical performance data from OpenDota. 
                   Enter a player's OpenDota ID or profile URL along with their current stats 
                   to get a predicted cost.""",
    article="""### How it works
                - The predictor uses machine learning trained on historical RD2L draft data
                - Player statistics are fetched from OpenDota API
                - Position comfort levels range from 1 (least comfortable) to 5 (most comfortable)
                - Predictions are based on both current stats and historical performance
                
                ### Notes
                - MMR should be the player's current solo MMR
                - Position comfort should reflect actual role experience
                - Predictions are estimates and may vary from actual draft results"""
)

if __name__ == "__main__":
    demo.launch()