|
from torch_geometric.nn.conv import MessagePassing |
|
from torch_geometric.nn.conv.cheb_conv import ChebConv |
|
from torch_geometric.nn.inits import zeros, normal |
|
|
|
|
|
class ChebConv(ChebConv): |
|
def reset_parameters(self): |
|
for lin in self.lins: |
|
normal(lin, mean = 0, std = 0.1) |
|
|
|
normal(self.bias, mean = 0, std = 0.1) |
|
|
|
|
|
|
|
class Pool(MessagePassing): |
|
def __init__(self): |
|
|
|
super(Pool, self).__init__(flow='source_to_target') |
|
|
|
def forward(self, x, pool_mat, dtype=None): |
|
pool_mat = pool_mat.transpose(0, 1) |
|
out = self.propagate(edge_index=pool_mat._indices(), x=x, norm=pool_mat._values(), size=pool_mat.size()) |
|
return out |
|
|
|
def message(self, x_j, norm): |
|
return norm.view(1, -1, 1) * x_j |
|
|
|
|
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
class residualBlock(nn.Module): |
|
def __init__(self, in_channels, out_channels, stride=1): |
|
""" |
|
Args: |
|
in_channels (int): Number of input channels. |
|
out_channels (int): Number of output channels. |
|
stride (int): Controls the stride. |
|
""" |
|
super(residualBlock, self).__init__() |
|
|
|
self.skip = nn.Sequential() |
|
|
|
if stride != 1 or in_channels != out_channels: |
|
self.skip = nn.Sequential( |
|
nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride, bias=False), |
|
nn.BatchNorm2d(out_channels, track_running_stats=False)) |
|
else: |
|
self.skip = None |
|
|
|
self.block = nn.Sequential(nn.BatchNorm2d(in_channels, track_running_stats=False), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(in_channels, out_channels, 3, padding=1), |
|
nn.BatchNorm2d(out_channels, track_running_stats=False), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(out_channels, out_channels, 3, padding=1) |
|
) |
|
|
|
def forward(self, x): |
|
identity = x |
|
out = self.block(x) |
|
|
|
if self.skip is not None: |
|
identity = self.skip(x) |
|
|
|
out += identity |
|
out = F.relu(out) |
|
|
|
return out |