from torch_geometric.nn.conv import MessagePassing from torch_geometric.nn.conv.cheb_conv import ChebConv from torch_geometric.nn.inits import zeros, normal # We change the default initialization from zeros to a normal distribution class ChebConv(ChebConv): def reset_parameters(self): for lin in self.lins: normal(lin, mean = 0, std = 0.1) #lin.reset_parameters() normal(self.bias, mean = 0, std = 0.1) #zeros(self.bias) # Pooling from COMA: https://github.com/pixelite1201/pytorch_coma/blob/master/layers.py class Pool(MessagePassing): def __init__(self): # source_to_target is the default value for flow, but is specified here for explicitness super(Pool, self).__init__(flow='source_to_target') def forward(self, x, pool_mat, dtype=None): pool_mat = pool_mat.transpose(0, 1) out = self.propagate(edge_index=pool_mat._indices(), x=x, norm=pool_mat._values(), size=pool_mat.size()) return out def message(self, x_j, norm): return norm.view(1, -1, 1) * x_j import torch.nn as nn import torch.nn.functional as F class residualBlock(nn.Module): def __init__(self, in_channels, out_channels, stride=1): """ Args: in_channels (int): Number of input channels. out_channels (int): Number of output channels. stride (int): Controls the stride. """ super(residualBlock, self).__init__() self.skip = nn.Sequential() if stride != 1 or in_channels != out_channels: self.skip = nn.Sequential( nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_channels, track_running_stats=False)) else: self.skip = None self.block = nn.Sequential(nn.BatchNorm2d(in_channels, track_running_stats=False), nn.ReLU(inplace=True), nn.Conv2d(in_channels, out_channels, 3, padding=1), nn.BatchNorm2d(out_channels, track_running_stats=False), nn.ReLU(inplace=True), nn.Conv2d(out_channels, out_channels, 3, padding=1) ) def forward(self, x): identity = x out = self.block(x) if self.skip is not None: identity = self.skip(x) out += identity out = F.relu(out) return out