Spaces:
Runtime error
Runtime error
| import os | |
| import sys | |
| # Adicionar o caminho da pasta ComfyUI ao sys.path | |
| current_dir = os.path.dirname(os.path.abspath(__file__)) | |
| comfyui_path = os.path.join(current_dir, "ComfyUI") | |
| sys.path.append(comfyui_path) | |
| import random | |
| import torch | |
| from pathlib import Path | |
| from PIL import Image | |
| import gradio as gr | |
| from huggingface_hub import hf_hub_download | |
| from nodes import NODE_CLASS_MAPPINGS | |
| from comfy import model_management | |
| import folder_paths | |
| print("CUDA disponível:", torch.cuda.is_available()) | |
| print("Quantidade de GPUs:", torch.cuda.device_count()) | |
| if torch.cuda.is_available(): | |
| print("GPU atual:", torch.cuda.get_device_name(0)) | |
| # Diretório base e de saída | |
| BASE_DIR = os.path.dirname(os.path.realpath(__file__)) | |
| output_dir = os.path.join(BASE_DIR, "output") | |
| os.makedirs(output_dir, exist_ok=True) | |
| folder_paths.set_output_directory(output_dir) | |
| # Baixar e carregar os modelos necessários | |
| hf_hub_download(repo_id="black-forest-labs/FLUX.1-Redux-dev", | |
| filename="flux1-redux-dev.safetensors", | |
| local_dir="models/style_models") | |
| hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", | |
| filename="t5xxl_fp16.safetensors", | |
| local_dir="models/text_encoders") | |
| hf_hub_download(repo_id="zer0int/CLIP-GmP-ViT-L-14", | |
| filename="ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors", | |
| local_dir="models/text_encoders") | |
| hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev", | |
| filename="ae.safetensors", | |
| local_dir="models/vae") | |
| hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev", | |
| filename="flux1-dev.safetensors.safetensors", | |
| local_dir="models/diffusion_models") | |
| hf_hub_download(repo_id="google/siglip-so400m-patch14-384", | |
| filename="model.safetensors", | |
| local_dir="models/clip_vision") | |
| hf_hub_download(repo_id="nftnik/NFTNIK-FLUX.1-dev-LoRA", | |
| filename="NFTNIK_FLUX.1[dev]_LoRA.safetensors", | |
| local_dir="models/lora") | |
| # Inicializar os nós e pré-carregar os modelos | |
| intconstant = NODE_CLASS_MAPPINGS["INTConstant"]() | |
| dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]() | |
| dualcliploader_357 = dualcliploader.load_clip( | |
| clip_name1="models/text_encoders/t5xxl_fp16.safetensors", | |
| clip_name2="models/text_encoders/ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors", | |
| type="flux", | |
| ) | |
| stylemodelloader = NODE_CLASS_MAPPINGS["StyleModelLoader"]() | |
| stylemodelloader_441 = stylemodelloader.load_style_model( | |
| style_model_name="models/style_models/flux1-redux-dev.safetensors" | |
| ) | |
| vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]() | |
| vaeloader_359 = vaeloader.load_vae(vae_name="models/vae/ae.safetensors") | |
| # Lista de modelos para carregamento na GPU | |
| model_loaders = [dualcliploader_357, vaeloader_359, stylemodelloader_441] | |
| valid_models = [ | |
| getattr(loader[0], 'patcher', loader[0]) | |
| for loader in model_loaders | |
| if not isinstance(loader[0], dict) and not isinstance(getattr(loader[0], 'patcher', None), dict) | |
| ] | |
| model_management.load_models_gpu(valid_models) | |
| # Função para importar nodes personalizados | |
| def import_custom_nodes(): | |
| import asyncio | |
| import execution | |
| from nodes import init_extra_nodes | |
| import server | |
| loop = asyncio.new_event_loop() | |
| asyncio.set_event_loop(loop) | |
| server_instance = server.PromptServer(loop) | |
| execution.PromptQueue(server_instance) | |
| init_extra_nodes() | |
| # Função principal de geração | |
| def generate_image(prompt, input_image, lora_weight, guidance, downsampling_factor, weight, seed, width, height, batch_size, steps): | |
| import_custom_nodes() | |
| try: | |
| with torch.inference_mode(): | |
| # Codificar texto | |
| cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]() | |
| encoded_text = cliptextencode.encode( | |
| text=prompt, | |
| clip=dualcliploader_357[0] | |
| ) | |
| # Carregar LoRA | |
| loraloadermodelonly = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]() | |
| lora_model = loraloadermodelonly.load_lora_model_only( | |
| lora_name="models/lora/NFTNIK_FLUX.1[dev]_LoRA.safetensors", | |
| strength_model=lora_weight, | |
| model=stylemodelloader_441[0] | |
| ) | |
| # Processar imagem de entrada | |
| loadimage = NODE_CLASS_MAPPINGS["LoadImage"]() | |
| loaded_image = loadimage.load_image(image=input_image) | |
| # Decodificar e salvar | |
| vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]() | |
| decoded = vaedecode.decode( | |
| samples=lora_model[0], | |
| vae=vaeloader_359[0] | |
| ) | |
| temp_filename = f"Flux_{random.randint(0, 99999)}.png" | |
| temp_path = os.path.join(output_dir, temp_filename) | |
| Image.fromarray((decoded[0] * 255).astype("uint8")).save(temp_path) | |
| return temp_path | |
| except Exception as e: | |
| print(f"Erro ao gerar imagem: {str(e)}") | |
| return None | |
| # Interface Gradio | |
| with gr.Blocks() as app: | |
| gr.Markdown("# Gerador de Imagens FLUX Redux") | |
| with gr.Row(): | |
| with gr.Column(): | |
| prompt_input = gr.Textbox(label="Prompt", placeholder="Digite seu prompt aqui...", lines=5) | |
| input_image = gr.Image(label="Imagem de Entrada", type="filepath") | |
| lora_weight = gr.Slider(minimum=0, maximum=2, step=0.1, value=0.6, label="Peso LoRA") | |
| generate_btn = gr.Button("Gerar Imagem") | |
| with gr.Column(): | |
| output_image = gr.Image(label="Imagem Gerada", type="filepath") | |
| generate_btn.click( | |
| fn=generate_image, | |
| inputs=[prompt_input, input_image, lora_weight], | |
| outputs=[output_image] | |
| ) | |
| if __name__ == "__main__": | |
| app.launch() | |