Spaces:
Sleeping
Sleeping
File size: 5,789 Bytes
6aa4d81 079b1b4 6aa4d81 882618e 6aa4d81 584121b 6aa4d81 882618e 6aa4d81 882618e 6aa4d81 882618e 6aa4d81 882618e 6aa4d81 882618e 6aa4d81 882618e 6aa4d81 882618e 6aa4d81 882618e 6aa4d81 882618e 6aa4d81 882618e 6aa4d81 882618e 6aa4d81 882618e 6aa4d81 882618e 6aa4d81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import os
import sys
# Adicionar o caminho da pasta ComfyUI ao sys.path
current_dir = os.path.dirname(os.path.abspath(__file__))
comfyui_path = os.path.join(current_dir, "ComfyUI")
sys.path.append(comfyui_path)
import random
import torch
from pathlib import Path
from PIL import Image
import gradio as gr
from huggingface_hub import hf_hub_download
from nodes import NODE_CLASS_MAPPINGS
from comfy import model_management
import folder_paths
print("CUDA disponível:", torch.cuda.is_available())
print("Quantidade de GPUs:", torch.cuda.device_count())
if torch.cuda.is_available():
print("GPU atual:", torch.cuda.get_device_name(0))
# Diretório base e de saída
BASE_DIR = os.path.dirname(os.path.realpath(__file__))
output_dir = os.path.join(BASE_DIR, "output")
os.makedirs(output_dir, exist_ok=True)
folder_paths.set_output_directory(output_dir)
# Baixar e carregar os modelos necessários
hf_hub_download(repo_id="black-forest-labs/FLUX.1-Redux-dev",
filename="flux1-redux-dev.safetensors",
local_dir="models/style_models")
hf_hub_download(repo_id="comfyanonymous/flux_text_encoders",
filename="t5xxl_fp16.safetensors",
local_dir="models/text_encoders")
hf_hub_download(repo_id="zer0int/CLIP-GmP-ViT-L-14",
filename="ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors",
local_dir="models/text_encoders")
hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev",
filename="ae.safetensors",
local_dir="models/vae")
hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev",
filename="flux1-dev.safetensors.safetensors",
local_dir="models/diffusion_models")
hf_hub_download(repo_id="google/siglip-so400m-patch14-384",
filename="model.safetensors",
local_dir="models/clip_vision")
hf_hub_download(repo_id="nftnik/NFTNIK-FLUX.1-dev-LoRA",
filename="NFTNIK_FLUX.1[dev]_LoRA.safetensors",
local_dir="models/lora")
# Inicializar os nós e pré-carregar os modelos
intconstant = NODE_CLASS_MAPPINGS["INTConstant"]()
dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]()
dualcliploader_357 = dualcliploader.load_clip(
clip_name1="models/text_encoders/t5xxl_fp16.safetensors",
clip_name2="models/text_encoders/ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors",
type="flux",
)
stylemodelloader = NODE_CLASS_MAPPINGS["StyleModelLoader"]()
stylemodelloader_441 = stylemodelloader.load_style_model(
style_model_name="models/style_models/flux1-redux-dev.safetensors"
)
vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
vaeloader_359 = vaeloader.load_vae(vae_name="models/vae/ae.safetensors")
# Lista de modelos para carregamento na GPU
model_loaders = [dualcliploader_357, vaeloader_359, stylemodelloader_441]
valid_models = [
getattr(loader[0], 'patcher', loader[0])
for loader in model_loaders
if not isinstance(loader[0], dict) and not isinstance(getattr(loader[0], 'patcher', None), dict)
]
model_management.load_models_gpu(valid_models)
# Função para importar nodes personalizados
def import_custom_nodes():
import asyncio
import execution
from nodes import init_extra_nodes
import server
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
server_instance = server.PromptServer(loop)
execution.PromptQueue(server_instance)
init_extra_nodes()
# Função principal de geração
def generate_image(prompt, input_image, lora_weight, guidance, downsampling_factor, weight, seed, width, height, batch_size, steps):
import_custom_nodes()
try:
with torch.inference_mode():
# Codificar texto
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
encoded_text = cliptextencode.encode(
text=prompt,
clip=dualcliploader_357[0]
)
# Carregar LoRA
loraloadermodelonly = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]()
lora_model = loraloadermodelonly.load_lora_model_only(
lora_name="models/lora/NFTNIK_FLUX.1[dev]_LoRA.safetensors",
strength_model=lora_weight,
model=stylemodelloader_441[0]
)
# Processar imagem de entrada
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
loaded_image = loadimage.load_image(image=input_image)
# Decodificar e salvar
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
decoded = vaedecode.decode(
samples=lora_model[0],
vae=vaeloader_359[0]
)
temp_filename = f"Flux_{random.randint(0, 99999)}.png"
temp_path = os.path.join(output_dir, temp_filename)
Image.fromarray((decoded[0] * 255).astype("uint8")).save(temp_path)
return temp_path
except Exception as e:
print(f"Erro ao gerar imagem: {str(e)}")
return None
# Interface Gradio
with gr.Blocks() as app:
gr.Markdown("# Gerador de Imagens FLUX Redux")
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(label="Prompt", placeholder="Digite seu prompt aqui...", lines=5)
input_image = gr.Image(label="Imagem de Entrada", type="filepath")
lora_weight = gr.Slider(minimum=0, maximum=2, step=0.1, value=0.6, label="Peso LoRA")
generate_btn = gr.Button("Gerar Imagem")
with gr.Column():
output_image = gr.Image(label="Imagem Gerada", type="filepath")
generate_btn.click(
fn=generate_image,
inputs=[prompt_input, input_image, lora_weight],
outputs=[output_image]
)
if __name__ == "__main__":
app.launch()
|