Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,7 @@ from PIL import Image
|
|
6 |
import gradio as gr
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
from nodes import NODE_CLASS_MAPPINGS
|
|
|
9 |
import folder_paths
|
10 |
|
11 |
# Diretório base e de saída
|
@@ -14,39 +15,61 @@ output_dir = os.path.join(BASE_DIR, "output")
|
|
14 |
os.makedirs(output_dir, exist_ok=True)
|
15 |
folder_paths.set_output_directory(output_dir)
|
16 |
|
17 |
-
# Baixar os modelos necessários
|
18 |
-
|
19 |
hf_hub_download(repo_id="black-forest-labs/FLUX.1-Redux-dev",
|
20 |
-
filename="flux1-redux-dev.safetensors",
|
21 |
-
local_dir="models/style_models")
|
22 |
|
23 |
hf_hub_download(repo_id="comfyanonymous/flux_text_encoders",
|
24 |
-
filename="t5xxl_fp16.safetensors",
|
25 |
-
local_dir="models/text_encoders")
|
26 |
|
27 |
hf_hub_download(repo_id="zer0int/CLIP-GmP-ViT-L-14",
|
28 |
-
filename="ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors",
|
29 |
-
local_dir="models/text_encoders")
|
30 |
|
31 |
hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev",
|
32 |
-
filename="ae.safetensors",
|
33 |
-
local_dir="models/vae")
|
34 |
|
35 |
hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev",
|
36 |
-
filename="flux1-dev.safetensors.safetensors",
|
37 |
-
local_dir="models/diffusion_models")
|
38 |
|
39 |
hf_hub_download(repo_id="google/siglip-so400m-patch14-384",
|
40 |
-
filename="model.safetensors",
|
41 |
-
local_dir="models/clip_vision")
|
42 |
|
43 |
hf_hub_download(repo_id="nftnik/NFTNIK-FLUX.1-dev-LoRA",
|
44 |
-
filename="NFTNIK_FLUX.1[dev]_LoRA.safetensors",
|
45 |
-
local_dir="models/lora")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
# Função para importar nodes personalizados
|
48 |
def import_custom_nodes():
|
49 |
-
"""Carregar nodes customizados."""
|
50 |
import asyncio
|
51 |
import execution
|
52 |
from nodes import init_extra_nodes
|
@@ -62,49 +85,32 @@ def import_custom_nodes():
|
|
62 |
# Função principal de geração
|
63 |
def generate_image(prompt, input_image, lora_weight, guidance, downsampling_factor, weight, seed, width, height, batch_size, steps):
|
64 |
import_custom_nodes()
|
65 |
-
|
66 |
try:
|
67 |
with torch.inference_mode():
|
68 |
-
# Carregar CLIP
|
69 |
-
dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]()
|
70 |
-
dualcliploader_loaded = dualcliploader.load_clip(
|
71 |
-
clip_name1="models/text_encoders/t5xxl_fp16.safetensors",
|
72 |
-
clip_name2="models/clip_vision/ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors",
|
73 |
-
type="flux"
|
74 |
-
)
|
75 |
-
|
76 |
# Codificar texto
|
77 |
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
|
78 |
encoded_text = cliptextencode.encode(
|
79 |
text=prompt,
|
80 |
-
clip=
|
81 |
)
|
82 |
|
83 |
-
# Carregar
|
84 |
-
stylemodelloader = NODE_CLASS_MAPPINGS["StyleModelLoader"]()
|
85 |
-
style_model = stylemodelloader.load_style_model(
|
86 |
-
style_model_name="models/style_models/flux1-redux-dev.safetensors"
|
87 |
-
)
|
88 |
loraloadermodelonly = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]()
|
89 |
lora_model = loraloadermodelonly.load_lora_model_only(
|
90 |
lora_name="models/lora/NFTNIK_FLUX.1[dev]_LoRA.safetensors",
|
91 |
strength_model=lora_weight,
|
92 |
-
model=
|
93 |
)
|
94 |
|
95 |
# Processar imagem de entrada
|
96 |
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
|
97 |
loaded_image = loadimage.load_image(image=input_image)
|
98 |
|
99 |
-
# Configurações adicionais e saída
|
100 |
-
vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
|
101 |
-
vae = vaeloader.load_vae(vae_name="models/vae/ae.safetensors")
|
102 |
-
|
103 |
# Decodificar e salvar
|
104 |
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
|
105 |
decoded = vaedecode.decode(
|
106 |
samples=lora_model[0],
|
107 |
-
vae=
|
108 |
)
|
109 |
|
110 |
temp_filename = f"Flux_{random.randint(0, 99999)}.png"
|
@@ -124,14 +130,6 @@ with gr.Blocks() as app:
|
|
124 |
prompt_input = gr.Textbox(label="Prompt", placeholder="Digite seu prompt aqui...", lines=5)
|
125 |
input_image = gr.Image(label="Imagem de Entrada", type="filepath")
|
126 |
lora_weight = gr.Slider(minimum=0, maximum=2, step=0.1, value=0.6, label="Peso LoRA")
|
127 |
-
guidance = gr.Slider(minimum=0, maximum=20, step=0.1, value=3.5, label="Orientação")
|
128 |
-
downsampling_factor = gr.Slider(minimum=1, maximum=8, step=1, value=3, label="Fator de Redução")
|
129 |
-
weight = gr.Slider(minimum=0, maximum=2, step=0.1, value=1.0, label="Peso do Modelo")
|
130 |
-
seed = gr.Number(value=random.randint(1, 2**64), label="Seed", precision=0)
|
131 |
-
width = gr.Number(value=1024, label="Largura", precision=0)
|
132 |
-
height = gr.Number(value=1024, label="Altura", precision=0)
|
133 |
-
batch_size = gr.Number(value=1, label="Tamanho do Lote", precision=0)
|
134 |
-
steps = gr.Number(value=20, label="Etapas", precision=0)
|
135 |
generate_btn = gr.Button("Gerar Imagem")
|
136 |
|
137 |
with gr.Column():
|
@@ -139,19 +137,7 @@ with gr.Blocks() as app:
|
|
139 |
|
140 |
generate_btn.click(
|
141 |
fn=generate_image,
|
142 |
-
inputs=[
|
143 |
-
prompt_input,
|
144 |
-
input_image,
|
145 |
-
lora_weight,
|
146 |
-
guidance,
|
147 |
-
downsampling_factor,
|
148 |
-
weight,
|
149 |
-
seed,
|
150 |
-
width,
|
151 |
-
height,
|
152 |
-
batch_size,
|
153 |
-
steps
|
154 |
-
],
|
155 |
outputs=[output_image]
|
156 |
)
|
157 |
|
|
|
6 |
import gradio as gr
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
from nodes import NODE_CLASS_MAPPINGS
|
9 |
+
from comfy import model_management
|
10 |
import folder_paths
|
11 |
|
12 |
# Diretório base e de saída
|
|
|
15 |
os.makedirs(output_dir, exist_ok=True)
|
16 |
folder_paths.set_output_directory(output_dir)
|
17 |
|
18 |
+
# Baixar e carregar os modelos necessários
|
|
|
19 |
hf_hub_download(repo_id="black-forest-labs/FLUX.1-Redux-dev",
|
20 |
+
filename="flux1-redux-dev.safetensors",
|
21 |
+
local_dir="models/style_models")
|
22 |
|
23 |
hf_hub_download(repo_id="comfyanonymous/flux_text_encoders",
|
24 |
+
filename="t5xxl_fp16.safetensors",
|
25 |
+
local_dir="models/text_encoders")
|
26 |
|
27 |
hf_hub_download(repo_id="zer0int/CLIP-GmP-ViT-L-14",
|
28 |
+
filename="ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors",
|
29 |
+
local_dir="models/text_encoders")
|
30 |
|
31 |
hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev",
|
32 |
+
filename="ae.safetensors",
|
33 |
+
local_dir="models/vae")
|
34 |
|
35 |
hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev",
|
36 |
+
filename="flux1-dev.safetensors.safetensors",
|
37 |
+
local_dir="models/diffusion_models")
|
38 |
|
39 |
hf_hub_download(repo_id="google/siglip-so400m-patch14-384",
|
40 |
+
filename="model.safetensors",
|
41 |
+
local_dir="models/clip_vision")
|
42 |
|
43 |
hf_hub_download(repo_id="nftnik/NFTNIK-FLUX.1-dev-LoRA",
|
44 |
+
filename="NFTNIK_FLUX.1[dev]_LoRA.safetensors",
|
45 |
+
local_dir="models/lora")
|
46 |
+
|
47 |
+
# Inicializar os nós e pré-carregar os modelos
|
48 |
+
intconstant = NODE_CLASS_MAPPINGS["INTConstant"]()
|
49 |
+
dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]()
|
50 |
+
dualcliploader_357 = dualcliploader.load_clip(
|
51 |
+
clip_name1="models/text_encoders/t5xxl_fp16.safetensors",
|
52 |
+
clip_name2="models/text_encoders/ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors",
|
53 |
+
type="flux",
|
54 |
+
)
|
55 |
+
stylemodelloader = NODE_CLASS_MAPPINGS["StyleModelLoader"]()
|
56 |
+
stylemodelloader_441 = stylemodelloader.load_style_model(
|
57 |
+
style_model_name="models/style_models/flux1-redux-dev.safetensors"
|
58 |
+
)
|
59 |
+
vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
|
60 |
+
vaeloader_359 = vaeloader.load_vae(vae_name="models/vae/ae.safetensors")
|
61 |
+
|
62 |
+
# Lista de modelos para carregamento na GPU
|
63 |
+
model_loaders = [dualcliploader_357, vaeloader_359, stylemodelloader_441]
|
64 |
+
valid_models = [
|
65 |
+
getattr(loader[0], 'patcher', loader[0])
|
66 |
+
for loader in model_loaders
|
67 |
+
if not isinstance(loader[0], dict) and not isinstance(getattr(loader[0], 'patcher', None), dict)
|
68 |
+
]
|
69 |
+
model_management.load_models_gpu(valid_models)
|
70 |
|
71 |
# Função para importar nodes personalizados
|
72 |
def import_custom_nodes():
|
|
|
73 |
import asyncio
|
74 |
import execution
|
75 |
from nodes import init_extra_nodes
|
|
|
85 |
# Função principal de geração
|
86 |
def generate_image(prompt, input_image, lora_weight, guidance, downsampling_factor, weight, seed, width, height, batch_size, steps):
|
87 |
import_custom_nodes()
|
|
|
88 |
try:
|
89 |
with torch.inference_mode():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
# Codificar texto
|
91 |
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
|
92 |
encoded_text = cliptextencode.encode(
|
93 |
text=prompt,
|
94 |
+
clip=dualcliploader_357[0]
|
95 |
)
|
96 |
|
97 |
+
# Carregar LoRA
|
|
|
|
|
|
|
|
|
98 |
loraloadermodelonly = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]()
|
99 |
lora_model = loraloadermodelonly.load_lora_model_only(
|
100 |
lora_name="models/lora/NFTNIK_FLUX.1[dev]_LoRA.safetensors",
|
101 |
strength_model=lora_weight,
|
102 |
+
model=stylemodelloader_441[0]
|
103 |
)
|
104 |
|
105 |
# Processar imagem de entrada
|
106 |
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
|
107 |
loaded_image = loadimage.load_image(image=input_image)
|
108 |
|
|
|
|
|
|
|
|
|
109 |
# Decodificar e salvar
|
110 |
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
|
111 |
decoded = vaedecode.decode(
|
112 |
samples=lora_model[0],
|
113 |
+
vae=vaeloader_359[0]
|
114 |
)
|
115 |
|
116 |
temp_filename = f"Flux_{random.randint(0, 99999)}.png"
|
|
|
130 |
prompt_input = gr.Textbox(label="Prompt", placeholder="Digite seu prompt aqui...", lines=5)
|
131 |
input_image = gr.Image(label="Imagem de Entrada", type="filepath")
|
132 |
lora_weight = gr.Slider(minimum=0, maximum=2, step=0.1, value=0.6, label="Peso LoRA")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
generate_btn = gr.Button("Gerar Imagem")
|
134 |
|
135 |
with gr.Column():
|
|
|
137 |
|
138 |
generate_btn.click(
|
139 |
fn=generate_image,
|
140 |
+
inputs=[prompt_input, input_image, lora_weight],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
outputs=[output_image]
|
142 |
)
|
143 |
|