nftnik commited on
Commit
882618e
·
verified ·
1 Parent(s): 6aa4d81

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +45 -59
app.py CHANGED
@@ -6,6 +6,7 @@ from PIL import Image
6
  import gradio as gr
7
  from huggingface_hub import hf_hub_download
8
  from nodes import NODE_CLASS_MAPPINGS
 
9
  import folder_paths
10
 
11
  # Diretório base e de saída
@@ -14,39 +15,61 @@ output_dir = os.path.join(BASE_DIR, "output")
14
  os.makedirs(output_dir, exist_ok=True)
15
  folder_paths.set_output_directory(output_dir)
16
 
17
- # Baixar os modelos necessários
18
-
19
  hf_hub_download(repo_id="black-forest-labs/FLUX.1-Redux-dev",
20
- filename="flux1-redux-dev.safetensors",
21
- local_dir="models/style_models")
22
 
23
  hf_hub_download(repo_id="comfyanonymous/flux_text_encoders",
24
- filename="t5xxl_fp16.safetensors",
25
- local_dir="models/text_encoders")
26
 
27
  hf_hub_download(repo_id="zer0int/CLIP-GmP-ViT-L-14",
28
- filename="ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors",
29
- local_dir="models/text_encoders")
30
 
31
  hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev",
32
- filename="ae.safetensors",
33
- local_dir="models/vae")
34
 
35
  hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev",
36
- filename="flux1-dev.safetensors.safetensors",
37
- local_dir="models/diffusion_models")
38
 
39
  hf_hub_download(repo_id="google/siglip-so400m-patch14-384",
40
- filename="model.safetensors",
41
- local_dir="models/clip_vision")
42
 
43
  hf_hub_download(repo_id="nftnik/NFTNIK-FLUX.1-dev-LoRA",
44
- filename="NFTNIK_FLUX.1[dev]_LoRA.safetensors",
45
- local_dir="models/lora")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
 
47
  # Função para importar nodes personalizados
48
  def import_custom_nodes():
49
- """Carregar nodes customizados."""
50
  import asyncio
51
  import execution
52
  from nodes import init_extra_nodes
@@ -62,49 +85,32 @@ def import_custom_nodes():
62
  # Função principal de geração
63
  def generate_image(prompt, input_image, lora_weight, guidance, downsampling_factor, weight, seed, width, height, batch_size, steps):
64
  import_custom_nodes()
65
-
66
  try:
67
  with torch.inference_mode():
68
- # Carregar CLIP
69
- dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]()
70
- dualcliploader_loaded = dualcliploader.load_clip(
71
- clip_name1="models/text_encoders/t5xxl_fp16.safetensors",
72
- clip_name2="models/clip_vision/ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors",
73
- type="flux"
74
- )
75
-
76
  # Codificar texto
77
  cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
78
  encoded_text = cliptextencode.encode(
79
  text=prompt,
80
- clip=dualcliploader_loaded[0]
81
  )
82
 
83
- # Carregar modelos de estilo e LoRA
84
- stylemodelloader = NODE_CLASS_MAPPINGS["StyleModelLoader"]()
85
- style_model = stylemodelloader.load_style_model(
86
- style_model_name="models/style_models/flux1-redux-dev.safetensors"
87
- )
88
  loraloadermodelonly = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]()
89
  lora_model = loraloadermodelonly.load_lora_model_only(
90
  lora_name="models/lora/NFTNIK_FLUX.1[dev]_LoRA.safetensors",
91
  strength_model=lora_weight,
92
- model=style_model[0]
93
  )
94
 
95
  # Processar imagem de entrada
96
  loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
97
  loaded_image = loadimage.load_image(image=input_image)
98
 
99
- # Configurações adicionais e saída
100
- vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
101
- vae = vaeloader.load_vae(vae_name="models/vae/ae.safetensors")
102
-
103
  # Decodificar e salvar
104
  vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
105
  decoded = vaedecode.decode(
106
  samples=lora_model[0],
107
- vae=vae[0]
108
  )
109
 
110
  temp_filename = f"Flux_{random.randint(0, 99999)}.png"
@@ -124,14 +130,6 @@ with gr.Blocks() as app:
124
  prompt_input = gr.Textbox(label="Prompt", placeholder="Digite seu prompt aqui...", lines=5)
125
  input_image = gr.Image(label="Imagem de Entrada", type="filepath")
126
  lora_weight = gr.Slider(minimum=0, maximum=2, step=0.1, value=0.6, label="Peso LoRA")
127
- guidance = gr.Slider(minimum=0, maximum=20, step=0.1, value=3.5, label="Orientação")
128
- downsampling_factor = gr.Slider(minimum=1, maximum=8, step=1, value=3, label="Fator de Redução")
129
- weight = gr.Slider(minimum=0, maximum=2, step=0.1, value=1.0, label="Peso do Modelo")
130
- seed = gr.Number(value=random.randint(1, 2**64), label="Seed", precision=0)
131
- width = gr.Number(value=1024, label="Largura", precision=0)
132
- height = gr.Number(value=1024, label="Altura", precision=0)
133
- batch_size = gr.Number(value=1, label="Tamanho do Lote", precision=0)
134
- steps = gr.Number(value=20, label="Etapas", precision=0)
135
  generate_btn = gr.Button("Gerar Imagem")
136
 
137
  with gr.Column():
@@ -139,19 +137,7 @@ with gr.Blocks() as app:
139
 
140
  generate_btn.click(
141
  fn=generate_image,
142
- inputs=[
143
- prompt_input,
144
- input_image,
145
- lora_weight,
146
- guidance,
147
- downsampling_factor,
148
- weight,
149
- seed,
150
- width,
151
- height,
152
- batch_size,
153
- steps
154
- ],
155
  outputs=[output_image]
156
  )
157
 
 
6
  import gradio as gr
7
  from huggingface_hub import hf_hub_download
8
  from nodes import NODE_CLASS_MAPPINGS
9
+ from comfy import model_management
10
  import folder_paths
11
 
12
  # Diretório base e de saída
 
15
  os.makedirs(output_dir, exist_ok=True)
16
  folder_paths.set_output_directory(output_dir)
17
 
18
+ # Baixar e carregar os modelos necessários
 
19
  hf_hub_download(repo_id="black-forest-labs/FLUX.1-Redux-dev",
20
+ filename="flux1-redux-dev.safetensors",
21
+ local_dir="models/style_models")
22
 
23
  hf_hub_download(repo_id="comfyanonymous/flux_text_encoders",
24
+ filename="t5xxl_fp16.safetensors",
25
+ local_dir="models/text_encoders")
26
 
27
  hf_hub_download(repo_id="zer0int/CLIP-GmP-ViT-L-14",
28
+ filename="ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors",
29
+ local_dir="models/text_encoders")
30
 
31
  hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev",
32
+ filename="ae.safetensors",
33
+ local_dir="models/vae")
34
 
35
  hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev",
36
+ filename="flux1-dev.safetensors.safetensors",
37
+ local_dir="models/diffusion_models")
38
 
39
  hf_hub_download(repo_id="google/siglip-so400m-patch14-384",
40
+ filename="model.safetensors",
41
+ local_dir="models/clip_vision")
42
 
43
  hf_hub_download(repo_id="nftnik/NFTNIK-FLUX.1-dev-LoRA",
44
+ filename="NFTNIK_FLUX.1[dev]_LoRA.safetensors",
45
+ local_dir="models/lora")
46
+
47
+ # Inicializar os nós e pré-carregar os modelos
48
+ intconstant = NODE_CLASS_MAPPINGS["INTConstant"]()
49
+ dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]()
50
+ dualcliploader_357 = dualcliploader.load_clip(
51
+ clip_name1="models/text_encoders/t5xxl_fp16.safetensors",
52
+ clip_name2="models/text_encoders/ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors",
53
+ type="flux",
54
+ )
55
+ stylemodelloader = NODE_CLASS_MAPPINGS["StyleModelLoader"]()
56
+ stylemodelloader_441 = stylemodelloader.load_style_model(
57
+ style_model_name="models/style_models/flux1-redux-dev.safetensors"
58
+ )
59
+ vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
60
+ vaeloader_359 = vaeloader.load_vae(vae_name="models/vae/ae.safetensors")
61
+
62
+ # Lista de modelos para carregamento na GPU
63
+ model_loaders = [dualcliploader_357, vaeloader_359, stylemodelloader_441]
64
+ valid_models = [
65
+ getattr(loader[0], 'patcher', loader[0])
66
+ for loader in model_loaders
67
+ if not isinstance(loader[0], dict) and not isinstance(getattr(loader[0], 'patcher', None), dict)
68
+ ]
69
+ model_management.load_models_gpu(valid_models)
70
 
71
  # Função para importar nodes personalizados
72
  def import_custom_nodes():
 
73
  import asyncio
74
  import execution
75
  from nodes import init_extra_nodes
 
85
  # Função principal de geração
86
  def generate_image(prompt, input_image, lora_weight, guidance, downsampling_factor, weight, seed, width, height, batch_size, steps):
87
  import_custom_nodes()
 
88
  try:
89
  with torch.inference_mode():
 
 
 
 
 
 
 
 
90
  # Codificar texto
91
  cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
92
  encoded_text = cliptextencode.encode(
93
  text=prompt,
94
+ clip=dualcliploader_357[0]
95
  )
96
 
97
+ # Carregar LoRA
 
 
 
 
98
  loraloadermodelonly = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]()
99
  lora_model = loraloadermodelonly.load_lora_model_only(
100
  lora_name="models/lora/NFTNIK_FLUX.1[dev]_LoRA.safetensors",
101
  strength_model=lora_weight,
102
+ model=stylemodelloader_441[0]
103
  )
104
 
105
  # Processar imagem de entrada
106
  loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
107
  loaded_image = loadimage.load_image(image=input_image)
108
 
 
 
 
 
109
  # Decodificar e salvar
110
  vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
111
  decoded = vaedecode.decode(
112
  samples=lora_model[0],
113
+ vae=vaeloader_359[0]
114
  )
115
 
116
  temp_filename = f"Flux_{random.randint(0, 99999)}.png"
 
130
  prompt_input = gr.Textbox(label="Prompt", placeholder="Digite seu prompt aqui...", lines=5)
131
  input_image = gr.Image(label="Imagem de Entrada", type="filepath")
132
  lora_weight = gr.Slider(minimum=0, maximum=2, step=0.1, value=0.6, label="Peso LoRA")
 
 
 
 
 
 
 
 
133
  generate_btn = gr.Button("Gerar Imagem")
134
 
135
  with gr.Column():
 
137
 
138
  generate_btn.click(
139
  fn=generate_image,
140
+ inputs=[prompt_input, input_image, lora_weight],
 
 
 
 
 
 
 
 
 
 
 
 
141
  outputs=[output_image]
142
  )
143