Spaces:
Runtime error
Runtime error
| import os | |
| import sys | |
| import random | |
| import torch | |
| from pathlib import Path | |
| from PIL import Image | |
| import gradio as gr | |
| from huggingface_hub import hf_hub_download | |
| import spaces | |
| from typing import Union, Sequence, Mapping, Any | |
| # Adicionar o caminho da pasta ComfyUI ao sys.path primeiro | |
| current_dir = os.path.dirname(os.path.abspath(__file__)) | |
| comfyui_path = os.path.join(current_dir, "ComfyUI") | |
| sys.path.append(comfyui_path) | |
| # Agora podemos importar os m贸dulos do ComfyUI | |
| import folder_paths | |
| # Configura莽茫o inicial e diagn贸stico CUDA | |
| print("Python version:", sys.version) | |
| print("Torch version:", torch.__version__) | |
| print("CUDA dispon铆vel:", torch.cuda.is_available()) | |
| print("Quantidade de GPUs:", torch.cuda.device_count()) | |
| if torch.cuda.is_available(): | |
| print("GPU atual:", torch.cuda.get_device_name(0)) | |
| # Adicionar o caminho da pasta ComfyUI ao sys.path | |
| current_dir = os.path.dirname(os.path.abspath(__file__)) | |
| comfyui_path = os.path.join(current_dir, "ComfyUI") | |
| sys.path.append(comfyui_path) | |
| # Inicializar o ComfyUI | |
| def init_comfyui(): | |
| import execution | |
| from nodes import NODE_CLASS_MAPPINGS, init_custom_nodes | |
| import server | |
| import asyncio | |
| # Criar e configurar o loop de eventos | |
| loop = asyncio.new_event_loop() | |
| asyncio.set_event_loop(loop) | |
| # Inicializar servidor e n贸s | |
| server_instance = server.PromptServer(loop) | |
| execution.PromptQueue(server_instance) | |
| init_custom_nodes() | |
| return NODE_CLASS_MAPPINGS | |
| print("Inicializando ComfyUI...") | |
| NODE_CLASS_MAPPINGS = init_comfyui() | |
| # Configura莽茫o de diret贸rios | |
| BASE_DIR = os.path.dirname(os.path.realpath(__file__)) | |
| output_dir = os.path.join(BASE_DIR, "output") | |
| os.makedirs(output_dir, exist_ok=True) | |
| folder_paths.set_output_directory(output_dir) | |
| # Helper function | |
| def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any: | |
| try: | |
| return obj[index] | |
| except KeyError: | |
| return obj["result"][index] | |
| # Baixar modelos | |
| def download_models(): | |
| print("Baixando modelos...") | |
| models = [ | |
| ("black-forest-labs/FLUX.1-Redux-dev", "flux1-redux-dev.safetensors", "models/style_models"), | |
| ("comfyanonymous/flux_text_encoders", "t5xxl_fp16.safetensors", "models/text_encoders"), | |
| ("zer0int/CLIP-GmP-ViT-L-14", "ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors", "models/text_encoders"), | |
| ("black-forest-labs/FLUX.1-dev", "ae.safetensors", "models/vae"), | |
| ("black-forest-labs/FLUX.1-dev", "flux1-dev.safetensors", "models/diffusion_models"), | |
| ("google/siglip-so400m-patch14-384", "model.safetensors", "models/clip_vision") | |
| ] | |
| for repo_id, filename, local_dir in models: | |
| try: | |
| os.makedirs(local_dir, exist_ok=True) | |
| print(f"Baixando {filename} de {repo_id}...") | |
| hf_hub_download(repo_id=repo_id, filename=filename, local_dir=local_dir) | |
| except Exception as e: | |
| print(f"Erro ao baixar {filename} de {repo_id}: {str(e)}") | |
| continue | |
| # Download models no in铆cio | |
| download_models() | |
| # Inicializar modelos | |
| print("Inicializando modelos...") | |
| with torch.inference_mode(): | |
| # CLIP | |
| dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]() | |
| dualcliploader_357 = dualcliploader.load_clip( | |
| clip_name1="models/text_encoders/t5xxl_fp16.safetensors", | |
| clip_name2="models/text_encoders/ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors", | |
| type="flux", | |
| ) | |
| # Style Model | |
| stylemodelloader = NODE_CLASS_MAPPINGS["StyleModelLoader"]() | |
| stylemodelloader_441 = stylemodelloader.load_style_model( | |
| style_model_name="models/style_models/flux1-redux-dev.safetensors" | |
| ) | |
| # VAE | |
| vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]() | |
| vaeloader_359 = vaeloader.load_vae( | |
| vae_name="models/vae/ae.safetensors" | |
| ) | |
| def generate_image(prompt, input_image, lora_weight, guidance, downsampling_factor, weight, seed, width, height, batch_size, steps, progress=gr.Progress(track_tqdm=True)): | |
| try: | |
| with torch.inference_mode(): | |
| # Codificar texto | |
| cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]() | |
| encoded_text = cliptextencode.encode( | |
| text=prompt, | |
| clip=dualcliploader_357[0] | |
| ) | |
| # Carregar e processar imagem | |
| loadimage = NODE_CLASS_MAPPINGS["LoadImage"]() | |
| loaded_image = loadimage.load_image(image=input_image) | |
| # Flux Guidance | |
| fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]() | |
| flux_guidance = fluxguidance.append( | |
| guidance=guidance, | |
| conditioning=encoded_text[0] | |
| ) | |
| # Carregar LoRA | |
| loraloadermodelonly = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]() | |
| lora_model = loraloadermodelonly.load_lora_model_only( | |
| lora_name="models/lora/NFTNIK_FLUX.1[dev]_LoRA.safetensors", | |
| strength_model=lora_weight, | |
| model=stylemodelloader_441[0] | |
| ) | |
| # Redux Advanced | |
| reduxadvanced = NODE_CLASS_MAPPINGS["ReduxAdvanced"]() | |
| redux_result = reduxadvanced.apply_stylemodel( | |
| downsampling_factor=downsampling_factor, | |
| downsampling_function="area", | |
| mode="keep aspect ratio", | |
| weight=weight, | |
| conditioning=flux_guidance[0], | |
| style_model=stylemodelloader_441[0], | |
| image=loaded_image[0] | |
| ) | |
| # Empty Latent | |
| emptylatentimage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]() | |
| empty_latent = emptylatentimage.generate( | |
| width=width, | |
| height=height, | |
| batch_size=batch_size | |
| ) | |
| # KSampler | |
| ksampler = NODE_CLASS_MAPPINGS["KSampler"]() | |
| sampled = ksampler.sample( | |
| seed=seed, | |
| steps=steps, | |
| cfg=1, | |
| sampler_name="euler", | |
| scheduler="simple", | |
| denoise=1, | |
| model=lora_model[0], | |
| positive=redux_result[0], | |
| negative=flux_guidance[0], | |
| latent_image=empty_latent[0] | |
| ) | |
| # Decodificar VAE | |
| vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]() | |
| decoded = vaedecode.decode( | |
| samples=sampled[0], | |
| vae=vaeloader_359[0] | |
| ) | |
| # Salvar imagem | |
| temp_filename = f"Flux_{random.randint(0, 99999)}.png" | |
| temp_path = os.path.join(output_dir, temp_filename) | |
| Image.fromarray((decoded[0] * 255).astype("uint8")).save(temp_path) | |
| return temp_path | |
| except Exception as e: | |
| print(f"Erro ao gerar imagem: {str(e)}") | |
| return None | |
| # Interface Gradio | |
| with gr.Blocks() as app: | |
| gr.Markdown("# FLUX Redux Image Generator") | |
| with gr.Row(): | |
| with gr.Column(): | |
| prompt_input = gr.Textbox( | |
| label="Prompt", | |
| placeholder="Enter your prompt here...", | |
| lines=5 | |
| ) | |
| input_image = gr.Image( | |
| label="Input Image", | |
| type="filepath" | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| lora_weight = gr.Slider( | |
| minimum=0, | |
| maximum=2, | |
| step=0.1, | |
| value=0.6, | |
| label="LoRA Weight" | |
| ) | |
| guidance = gr.Slider( | |
| minimum=0, | |
| maximum=20, | |
| step=0.1, | |
| value=3.5, | |
| label="Guidance" | |
| ) | |
| downsampling_factor = gr.Slider( | |
| minimum=1, | |
| maximum=8, | |
| step=1, | |
| value=3, | |
| label="Downsampling Factor" | |
| ) | |
| weight = gr.Slider( | |
| minimum=0, | |
| maximum=2, | |
| step=0.1, | |
| value=1.0, | |
| label="Model Weight" | |
| ) | |
| with gr.Column(): | |
| seed = gr.Number( | |
| value=random.randint(1, 2**64), | |
| label="Seed", | |
| precision=0 | |
| ) | |
| width = gr.Number( | |
| value=1024, | |
| label="Width", | |
| precision=0 | |
| ) | |
| height = gr.Number( | |
| value=1024, | |
| label="Height", | |
| precision=0 | |
| ) | |
| batch_size = gr.Number( | |
| value=1, | |
| label="Batch Size", | |
| precision=0 | |
| ) | |
| steps = gr.Number( | |
| value=20, | |
| label="Steps", | |
| precision=0 | |
| ) | |
| generate_btn = gr.Button("Generate Image") | |
| with gr.Column(): | |
| output_image = gr.Image(label="Generated Image", type="pil") | |
| generate_btn.click( | |
| fn=generate_image, | |
| inputs=[ | |
| prompt_input, | |
| input_image, | |
| lora_weight, | |
| guidance, | |
| downsampling_factor, | |
| weight, | |
| seed, | |
| width, | |
| height, | |
| batch_size, | |
| steps | |
| ], | |
| outputs=[output_image] | |
| ) | |
| if __name__ == "__main__": | |
| app.launch() |