Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,886 Bytes
6aa4d81 079b1b4 6aa4d81 97e7f7b 6eb4d49 60c5f6d 6aa4d81 85e3861 97e7f7b 584121b 97e7f7b 60c5f6d 85e3861 60c5f6d 97e7f7b 6aa4d81 97e7f7b 85e3861 97e7f7b 7a2be17 97e7f7b 85e3861 97e7f7b 250758a 97e7f7b 85e3861 7a2be17 97e7f7b 60c5f6d 97e7f7b 34b406c 6aa4d81 34b406c 6aa4d81 34b406c 6aa4d81 34b406c 6aa4d81 34b406c 6aa4d81 34b406c 6aa4d81 97e7f7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
import os
import sys
import random
import torch
from pathlib import Path
from PIL import Image
import gradio as gr
from huggingface_hub import hf_hub_download
import spaces
from typing import Union, Sequence, Mapping, Any
# Adicionar o caminho da pasta ComfyUI ao sys.path primeiro
current_dir = os.path.dirname(os.path.abspath(__file__))
comfyui_path = os.path.join(current_dir, "ComfyUI")
sys.path.append(comfyui_path)
# Agora podemos importar os m贸dulos do ComfyUI
import folder_paths
# Configura莽茫o inicial e diagn贸stico CUDA
print("Python version:", sys.version)
print("Torch version:", torch.__version__)
print("CUDA dispon铆vel:", torch.cuda.is_available())
print("Quantidade de GPUs:", torch.cuda.device_count())
if torch.cuda.is_available():
print("GPU atual:", torch.cuda.get_device_name(0))
# Adicionar o caminho da pasta ComfyUI ao sys.path
current_dir = os.path.dirname(os.path.abspath(__file__))
comfyui_path = os.path.join(current_dir, "ComfyUI")
sys.path.append(comfyui_path)
# Inicializar o ComfyUI
def init_comfyui():
import execution
from nodes import NODE_CLASS_MAPPINGS, init_custom_nodes
import server
import asyncio
# Criar e configurar o loop de eventos
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
# Inicializar servidor e n贸s
server_instance = server.PromptServer(loop)
execution.PromptQueue(server_instance)
init_custom_nodes()
return NODE_CLASS_MAPPINGS
print("Inicializando ComfyUI...")
NODE_CLASS_MAPPINGS = init_comfyui()
# Configura莽茫o de diret贸rios
BASE_DIR = os.path.dirname(os.path.realpath(__file__))
output_dir = os.path.join(BASE_DIR, "output")
os.makedirs(output_dir, exist_ok=True)
folder_paths.set_output_directory(output_dir)
# Helper function
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
try:
return obj[index]
except KeyError:
return obj["result"][index]
# Baixar modelos
def download_models():
print("Baixando modelos...")
models = [
("black-forest-labs/FLUX.1-Redux-dev", "flux1-redux-dev.safetensors", "models/style_models"),
("comfyanonymous/flux_text_encoders", "t5xxl_fp16.safetensors", "models/text_encoders"),
("zer0int/CLIP-GmP-ViT-L-14", "ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors", "models/text_encoders"),
("black-forest-labs/FLUX.1-dev", "ae.safetensors", "models/vae"),
("black-forest-labs/FLUX.1-dev", "flux1-dev.safetensors", "models/diffusion_models"),
("google/siglip-so400m-patch14-384", "model.safetensors", "models/clip_vision")
]
for repo_id, filename, local_dir in models:
try:
os.makedirs(local_dir, exist_ok=True)
print(f"Baixando {filename} de {repo_id}...")
hf_hub_download(repo_id=repo_id, filename=filename, local_dir=local_dir)
except Exception as e:
print(f"Erro ao baixar {filename} de {repo_id}: {str(e)}")
continue
# Download models no in铆cio
download_models()
# Inicializar modelos
print("Inicializando modelos...")
with torch.inference_mode():
# CLIP
dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]()
dualcliploader_357 = dualcliploader.load_clip(
clip_name1="models/text_encoders/t5xxl_fp16.safetensors",
clip_name2="models/text_encoders/ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors",
type="flux",
)
# Style Model
stylemodelloader = NODE_CLASS_MAPPINGS["StyleModelLoader"]()
stylemodelloader_441 = stylemodelloader.load_style_model(
style_model_name="models/style_models/flux1-redux-dev.safetensors"
)
# VAE
vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
vaeloader_359 = vaeloader.load_vae(
vae_name="models/vae/ae.safetensors"
)
@spaces.GPU
def generate_image(prompt, input_image, lora_weight, guidance, downsampling_factor, weight, seed, width, height, batch_size, steps, progress=gr.Progress(track_tqdm=True)):
try:
with torch.inference_mode():
# Codificar texto
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
encoded_text = cliptextencode.encode(
text=prompt,
clip=dualcliploader_357[0]
)
# Carregar e processar imagem
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
loaded_image = loadimage.load_image(image=input_image)
# Flux Guidance
fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]()
flux_guidance = fluxguidance.append(
guidance=guidance,
conditioning=encoded_text[0]
)
# Carregar LoRA
loraloadermodelonly = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]()
lora_model = loraloadermodelonly.load_lora_model_only(
lora_name="models/lora/NFTNIK_FLUX.1[dev]_LoRA.safetensors",
strength_model=lora_weight,
model=stylemodelloader_441[0]
)
# Redux Advanced
reduxadvanced = NODE_CLASS_MAPPINGS["ReduxAdvanced"]()
redux_result = reduxadvanced.apply_stylemodel(
downsampling_factor=downsampling_factor,
downsampling_function="area",
mode="keep aspect ratio",
weight=weight,
conditioning=flux_guidance[0],
style_model=stylemodelloader_441[0],
image=loaded_image[0]
)
# Empty Latent
emptylatentimage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]()
empty_latent = emptylatentimage.generate(
width=width,
height=height,
batch_size=batch_size
)
# KSampler
ksampler = NODE_CLASS_MAPPINGS["KSampler"]()
sampled = ksampler.sample(
seed=seed,
steps=steps,
cfg=1,
sampler_name="euler",
scheduler="simple",
denoise=1,
model=lora_model[0],
positive=redux_result[0],
negative=flux_guidance[0],
latent_image=empty_latent[0]
)
# Decodificar VAE
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
decoded = vaedecode.decode(
samples=sampled[0],
vae=vaeloader_359[0]
)
# Salvar imagem
temp_filename = f"Flux_{random.randint(0, 99999)}.png"
temp_path = os.path.join(output_dir, temp_filename)
Image.fromarray((decoded[0] * 255).astype("uint8")).save(temp_path)
return temp_path
except Exception as e:
print(f"Erro ao gerar imagem: {str(e)}")
return None
# Interface Gradio
with gr.Blocks() as app:
gr.Markdown("# FLUX Redux Image Generator")
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(
label="Prompt",
placeholder="Enter your prompt here...",
lines=5
)
input_image = gr.Image(
label="Input Image",
type="filepath"
)
with gr.Row():
with gr.Column():
lora_weight = gr.Slider(
minimum=0,
maximum=2,
step=0.1,
value=0.6,
label="LoRA Weight"
)
guidance = gr.Slider(
minimum=0,
maximum=20,
step=0.1,
value=3.5,
label="Guidance"
)
downsampling_factor = gr.Slider(
minimum=1,
maximum=8,
step=1,
value=3,
label="Downsampling Factor"
)
weight = gr.Slider(
minimum=0,
maximum=2,
step=0.1,
value=1.0,
label="Model Weight"
)
with gr.Column():
seed = gr.Number(
value=random.randint(1, 2**64),
label="Seed",
precision=0
)
width = gr.Number(
value=1024,
label="Width",
precision=0
)
height = gr.Number(
value=1024,
label="Height",
precision=0
)
batch_size = gr.Number(
value=1,
label="Batch Size",
precision=0
)
steps = gr.Number(
value=20,
label="Steps",
precision=0
)
generate_btn = gr.Button("Generate Image")
with gr.Column():
output_image = gr.Image(label="Generated Image", type="pil")
generate_btn.click(
fn=generate_image,
inputs=[
prompt_input,
input_image,
lora_weight,
guidance,
downsampling_factor,
weight,
seed,
width,
height,
batch_size,
steps
],
outputs=[output_image]
)
if __name__ == "__main__":
app.launch() |