Redux / app.py
nftnik's picture
Update app.py
6aa4d81 verified
raw
history blame
5.82 kB
import os
import random
import torch
from pathlib import Path
from PIL import Image
import gradio as gr
from huggingface_hub import hf_hub_download
from nodes import NODE_CLASS_MAPPINGS
import folder_paths
# Diretório base e de saída
BASE_DIR = os.path.dirname(os.path.realpath(__file__))
output_dir = os.path.join(BASE_DIR, "output")
os.makedirs(output_dir, exist_ok=True)
folder_paths.set_output_directory(output_dir)
# Baixar os modelos necessários
hf_hub_download(repo_id="black-forest-labs/FLUX.1-Redux-dev",
filename="flux1-redux-dev.safetensors",
local_dir="models/style_models")
hf_hub_download(repo_id="comfyanonymous/flux_text_encoders",
filename="t5xxl_fp16.safetensors",
local_dir="models/text_encoders")
hf_hub_download(repo_id="zer0int/CLIP-GmP-ViT-L-14",
filename="ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors",
local_dir="models/text_encoders")
hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev",
filename="ae.safetensors",
local_dir="models/vae")
hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev",
filename="flux1-dev.safetensors.safetensors",
local_dir="models/diffusion_models")
hf_hub_download(repo_id="google/siglip-so400m-patch14-384",
filename="model.safetensors",
local_dir="models/clip_vision")
hf_hub_download(repo_id="nftnik/NFTNIK-FLUX.1-dev-LoRA",
filename="NFTNIK_FLUX.1[dev]_LoRA.safetensors",
local_dir="models/lora")
# Função para importar nodes personalizados
def import_custom_nodes():
"""Carregar nodes customizados."""
import asyncio
import execution
from nodes import init_extra_nodes
import server
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
server_instance = server.PromptServer(loop)
execution.PromptQueue(server_instance)
init_extra_nodes()
# Função principal de geração
def generate_image(prompt, input_image, lora_weight, guidance, downsampling_factor, weight, seed, width, height, batch_size, steps):
import_custom_nodes()
try:
with torch.inference_mode():
# Carregar CLIP
dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]()
dualcliploader_loaded = dualcliploader.load_clip(
clip_name1="models/text_encoders/t5xxl_fp16.safetensors",
clip_name2="models/clip_vision/ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors",
type="flux"
)
# Codificar texto
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
encoded_text = cliptextencode.encode(
text=prompt,
clip=dualcliploader_loaded[0]
)
# Carregar modelos de estilo e LoRA
stylemodelloader = NODE_CLASS_MAPPINGS["StyleModelLoader"]()
style_model = stylemodelloader.load_style_model(
style_model_name="models/style_models/flux1-redux-dev.safetensors"
)
loraloadermodelonly = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]()
lora_model = loraloadermodelonly.load_lora_model_only(
lora_name="models/lora/NFTNIK_FLUX.1[dev]_LoRA.safetensors",
strength_model=lora_weight,
model=style_model[0]
)
# Processar imagem de entrada
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
loaded_image = loadimage.load_image(image=input_image)
# Configurações adicionais e saída
vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
vae = vaeloader.load_vae(vae_name="models/vae/ae.safetensors")
# Decodificar e salvar
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
decoded = vaedecode.decode(
samples=lora_model[0],
vae=vae[0]
)
temp_filename = f"Flux_{random.randint(0, 99999)}.png"
temp_path = os.path.join(output_dir, temp_filename)
Image.fromarray((decoded[0] * 255).astype("uint8")).save(temp_path)
return temp_path
except Exception as e:
print(f"Erro ao gerar imagem: {str(e)}")
return None
# Interface Gradio
with gr.Blocks() as app:
gr.Markdown("# Gerador de Imagens FLUX Redux")
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(label="Prompt", placeholder="Digite seu prompt aqui...", lines=5)
input_image = gr.Image(label="Imagem de Entrada", type="filepath")
lora_weight = gr.Slider(minimum=0, maximum=2, step=0.1, value=0.6, label="Peso LoRA")
guidance = gr.Slider(minimum=0, maximum=20, step=0.1, value=3.5, label="Orientação")
downsampling_factor = gr.Slider(minimum=1, maximum=8, step=1, value=3, label="Fator de Redução")
weight = gr.Slider(minimum=0, maximum=2, step=0.1, value=1.0, label="Peso do Modelo")
seed = gr.Number(value=random.randint(1, 2**64), label="Seed", precision=0)
width = gr.Number(value=1024, label="Largura", precision=0)
height = gr.Number(value=1024, label="Altura", precision=0)
batch_size = gr.Number(value=1, label="Tamanho do Lote", precision=0)
steps = gr.Number(value=20, label="Etapas", precision=0)
generate_btn = gr.Button("Gerar Imagem")
with gr.Column():
output_image = gr.Image(label="Imagem Gerada", type="filepath")
generate_btn.click(
fn=generate_image,
inputs=[
prompt_input,
input_image,
lora_weight,
guidance,
downsampling_factor,
weight,
seed,
width,
height,
batch_size,
steps
],
outputs=[output_image]
)
if __name__ == "__main__":
app.launch()