Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import random | |
import torch | |
from pathlib import Path | |
from PIL import Image | |
import gradio as gr | |
from huggingface_hub import hf_hub_download | |
from nodes import NODE_CLASS_MAPPINGS | |
import folder_paths | |
# Diretório base e de saída | |
BASE_DIR = os.path.dirname(os.path.realpath(__file__)) | |
output_dir = os.path.join(BASE_DIR, "output") | |
os.makedirs(output_dir, exist_ok=True) | |
folder_paths.set_output_directory(output_dir) | |
# Baixar os modelos necessários | |
hf_hub_download(repo_id="black-forest-labs/FLUX.1-Redux-dev", | |
filename="flux1-redux-dev.safetensors", | |
local_dir="models/style_models") | |
hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", | |
filename="t5xxl_fp16.safetensors", | |
local_dir="models/text_encoders") | |
hf_hub_download(repo_id="zer0int/CLIP-GmP-ViT-L-14", | |
filename="ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors", | |
local_dir="models/text_encoders") | |
hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev", | |
filename="ae.safetensors", | |
local_dir="models/vae") | |
hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev", | |
filename="flux1-dev.safetensors.safetensors", | |
local_dir="models/diffusion_models") | |
hf_hub_download(repo_id="google/siglip-so400m-patch14-384", | |
filename="model.safetensors", | |
local_dir="models/clip_vision") | |
hf_hub_download(repo_id="nftnik/NFTNIK-FLUX.1-dev-LoRA", | |
filename="NFTNIK_FLUX.1[dev]_LoRA.safetensors", | |
local_dir="models/lora") | |
# Função para importar nodes personalizados | |
def import_custom_nodes(): | |
"""Carregar nodes customizados.""" | |
import asyncio | |
import execution | |
from nodes import init_extra_nodes | |
import server | |
loop = asyncio.new_event_loop() | |
asyncio.set_event_loop(loop) | |
server_instance = server.PromptServer(loop) | |
execution.PromptQueue(server_instance) | |
init_extra_nodes() | |
# Função principal de geração | |
def generate_image(prompt, input_image, lora_weight, guidance, downsampling_factor, weight, seed, width, height, batch_size, steps): | |
import_custom_nodes() | |
try: | |
with torch.inference_mode(): | |
# Carregar CLIP | |
dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]() | |
dualcliploader_loaded = dualcliploader.load_clip( | |
clip_name1="models/text_encoders/t5xxl_fp16.safetensors", | |
clip_name2="models/clip_vision/ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors", | |
type="flux" | |
) | |
# Codificar texto | |
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]() | |
encoded_text = cliptextencode.encode( | |
text=prompt, | |
clip=dualcliploader_loaded[0] | |
) | |
# Carregar modelos de estilo e LoRA | |
stylemodelloader = NODE_CLASS_MAPPINGS["StyleModelLoader"]() | |
style_model = stylemodelloader.load_style_model( | |
style_model_name="models/style_models/flux1-redux-dev.safetensors" | |
) | |
loraloadermodelonly = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]() | |
lora_model = loraloadermodelonly.load_lora_model_only( | |
lora_name="models/lora/NFTNIK_FLUX.1[dev]_LoRA.safetensors", | |
strength_model=lora_weight, | |
model=style_model[0] | |
) | |
# Processar imagem de entrada | |
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]() | |
loaded_image = loadimage.load_image(image=input_image) | |
# Configurações adicionais e saída | |
vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]() | |
vae = vaeloader.load_vae(vae_name="models/vae/ae.safetensors") | |
# Decodificar e salvar | |
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]() | |
decoded = vaedecode.decode( | |
samples=lora_model[0], | |
vae=vae[0] | |
) | |
temp_filename = f"Flux_{random.randint(0, 99999)}.png" | |
temp_path = os.path.join(output_dir, temp_filename) | |
Image.fromarray((decoded[0] * 255).astype("uint8")).save(temp_path) | |
return temp_path | |
except Exception as e: | |
print(f"Erro ao gerar imagem: {str(e)}") | |
return None | |
# Interface Gradio | |
with gr.Blocks() as app: | |
gr.Markdown("# Gerador de Imagens FLUX Redux") | |
with gr.Row(): | |
with gr.Column(): | |
prompt_input = gr.Textbox(label="Prompt", placeholder="Digite seu prompt aqui...", lines=5) | |
input_image = gr.Image(label="Imagem de Entrada", type="filepath") | |
lora_weight = gr.Slider(minimum=0, maximum=2, step=0.1, value=0.6, label="Peso LoRA") | |
guidance = gr.Slider(minimum=0, maximum=20, step=0.1, value=3.5, label="Orientação") | |
downsampling_factor = gr.Slider(minimum=1, maximum=8, step=1, value=3, label="Fator de Redução") | |
weight = gr.Slider(minimum=0, maximum=2, step=0.1, value=1.0, label="Peso do Modelo") | |
seed = gr.Number(value=random.randint(1, 2**64), label="Seed", precision=0) | |
width = gr.Number(value=1024, label="Largura", precision=0) | |
height = gr.Number(value=1024, label="Altura", precision=0) | |
batch_size = gr.Number(value=1, label="Tamanho do Lote", precision=0) | |
steps = gr.Number(value=20, label="Etapas", precision=0) | |
generate_btn = gr.Button("Gerar Imagem") | |
with gr.Column(): | |
output_image = gr.Image(label="Imagem Gerada", type="filepath") | |
generate_btn.click( | |
fn=generate_image, | |
inputs=[ | |
prompt_input, | |
input_image, | |
lora_weight, | |
guidance, | |
downsampling_factor, | |
weight, | |
seed, | |
width, | |
height, | |
batch_size, | |
steps | |
], | |
outputs=[output_image] | |
) | |
if __name__ == "__main__": | |
app.launch() | |