File size: 5,817 Bytes
6aa4d81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import os
import random
import torch
from pathlib import Path
from PIL import Image
import gradio as gr
from huggingface_hub import hf_hub_download
from nodes import NODE_CLASS_MAPPINGS
import folder_paths

# Diretório base e de saída
BASE_DIR = os.path.dirname(os.path.realpath(__file__))
output_dir = os.path.join(BASE_DIR, "output")
os.makedirs(output_dir, exist_ok=True)
folder_paths.set_output_directory(output_dir)

# Baixar os modelos necessários

hf_hub_download(repo_id="black-forest-labs/FLUX.1-Redux-dev",
filename="flux1-redux-dev.safetensors",
local_dir="models/style_models")

hf_hub_download(repo_id="comfyanonymous/flux_text_encoders",
filename="t5xxl_fp16.safetensors",
local_dir="models/text_encoders")

hf_hub_download(repo_id="zer0int/CLIP-GmP-ViT-L-14",
filename="ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors",
local_dir="models/text_encoders")

hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev",
filename="ae.safetensors",
local_dir="models/vae")

hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev",
filename="flux1-dev.safetensors.safetensors",
local_dir="models/diffusion_models")

hf_hub_download(repo_id="google/siglip-so400m-patch14-384",
filename="model.safetensors",
local_dir="models/clip_vision")

hf_hub_download(repo_id="nftnik/NFTNIK-FLUX.1-dev-LoRA",
filename="NFTNIK_FLUX.1[dev]_LoRA.safetensors",
local_dir="models/lora")

# Função para importar nodes personalizados
def import_custom_nodes():
    """Carregar nodes customizados."""
    import asyncio
    import execution
    from nodes import init_extra_nodes
    import server

    loop = asyncio.new_event_loop()
    asyncio.set_event_loop(loop)

    server_instance = server.PromptServer(loop)
    execution.PromptQueue(server_instance)
    init_extra_nodes()

# Função principal de geração
def generate_image(prompt, input_image, lora_weight, guidance, downsampling_factor, weight, seed, width, height, batch_size, steps):
    import_custom_nodes()

    try:
        with torch.inference_mode():
            # Carregar CLIP
            dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]()
            dualcliploader_loaded = dualcliploader.load_clip(
                clip_name1="models/text_encoders/t5xxl_fp16.safetensors",
                clip_name2="models/clip_vision/ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors",
                type="flux"
            )

            # Codificar texto
            cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
            encoded_text = cliptextencode.encode(
                text=prompt,
                clip=dualcliploader_loaded[0]
            )

            # Carregar modelos de estilo e LoRA
            stylemodelloader = NODE_CLASS_MAPPINGS["StyleModelLoader"]()
            style_model = stylemodelloader.load_style_model(
                style_model_name="models/style_models/flux1-redux-dev.safetensors"
            )
            loraloadermodelonly = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]()
            lora_model = loraloadermodelonly.load_lora_model_only(
                lora_name="models/lora/NFTNIK_FLUX.1[dev]_LoRA.safetensors",
                strength_model=lora_weight,
                model=style_model[0]
            )

            # Processar imagem de entrada
            loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
            loaded_image = loadimage.load_image(image=input_image)

            # Configurações adicionais e saída
            vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
            vae = vaeloader.load_vae(vae_name="models/vae/ae.safetensors")

            # Decodificar e salvar
            vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
            decoded = vaedecode.decode(
                samples=lora_model[0],
                vae=vae[0]
            )

            temp_filename = f"Flux_{random.randint(0, 99999)}.png"
            temp_path = os.path.join(output_dir, temp_filename)
            Image.fromarray((decoded[0] * 255).astype("uint8")).save(temp_path)

            return temp_path
    except Exception as e:
        print(f"Erro ao gerar imagem: {str(e)}")
        return None

# Interface Gradio
with gr.Blocks() as app:
    gr.Markdown("# Gerador de Imagens FLUX Redux")
    with gr.Row():
        with gr.Column():
            prompt_input = gr.Textbox(label="Prompt", placeholder="Digite seu prompt aqui...", lines=5)
            input_image = gr.Image(label="Imagem de Entrada", type="filepath")
            lora_weight = gr.Slider(minimum=0, maximum=2, step=0.1, value=0.6, label="Peso LoRA")
            guidance = gr.Slider(minimum=0, maximum=20, step=0.1, value=3.5, label="Orientação")
            downsampling_factor = gr.Slider(minimum=1, maximum=8, step=1, value=3, label="Fator de Redução")
            weight = gr.Slider(minimum=0, maximum=2, step=0.1, value=1.0, label="Peso do Modelo")
            seed = gr.Number(value=random.randint(1, 2**64), label="Seed", precision=0)
            width = gr.Number(value=1024, label="Largura", precision=0)
            height = gr.Number(value=1024, label="Altura", precision=0)
            batch_size = gr.Number(value=1, label="Tamanho do Lote", precision=0)
            steps = gr.Number(value=20, label="Etapas", precision=0)
            generate_btn = gr.Button("Gerar Imagem")

        with gr.Column():
            output_image = gr.Image(label="Imagem Gerada", type="filepath")

    generate_btn.click(
        fn=generate_image,
        inputs=[
            prompt_input,
            input_image,
            lora_weight,
            guidance,
            downsampling_factor,
            weight,
            seed,
            width,
            height,
            batch_size,
            steps
        ],
        outputs=[output_image]
    )

if __name__ == "__main__":
    app.launch()