File size: 9,959 Bytes
6aa4d81
651b8c4
e656061
6aa4d81
e656061
 
0845b5a
6aa4d81
0c0098b
e656061
 
 
 
 
 
 
 
57ecc99
e656061
57ecc99
 
 
d02c7da
57ecc99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
389b268
0ffc90f
57ecc99
 
 
0c0098b
e656061
 
 
 
 
 
 
a7d1628
e656061
 
 
a7d1628
e656061
0c0098b
 
 
 
 
 
e656061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
651b8c4
e656061
 
 
0ffc90f
e656061
 
 
 
 
 
 
 
 
 
 
 
651b8c4
e656061
651b8c4
e656061
 
0c0098b
 
e656061
0845b5a
 
 
e656061
0845b5a
16764be
e656061
0845b5a
 
5c1d384
e656061
 
 
 
 
 
 
 
0845b5a
 
 
 
 
 
16764be
0845b5a
 
 
 
 
 
 
e656061
0845b5a
e656061
 
0845b5a
 
16764be
e656061
0845b5a
 
 
 
 
 
5c1d384
0845b5a
 
 
 
 
 
 
 
 
e656061
0845b5a
 
 
 
5c1d384
e656061
0845b5a
 
 
e656061
0845b5a
 
0c0098b
 
 
 
0845b5a
0c0098b
e656061
0845b5a
0c0098b
0845b5a
 
e656061
6aa4d81
0845b5a
16764be
6aa4d81
0845b5a
 
16764be
 
 
 
0845b5a
 
 
 
16764be
0845b5a
 
 
16764be
 
 
 
 
 
0845b5a
16764be
 
 
 
 
 
0845b5a
 
16764be
 
 
0845b5a
16764be
0845b5a
16764be
 
 
 
0845b5a
16764be
0845b5a
 
16764be
0845b5a
16764be
 
0845b5a
16764be
0845b5a
16764be
 
0845b5a
16764be
0845b5a
16764be
 
0845b5a
16764be
0845b5a
16764be
 
0845b5a
16764be
0845b5a
16764be
 
 
0845b5a
16764be
0845b5a
0c0098b
0845b5a
6aa4d81
 
e656061
 
 
 
 
 
 
 
 
 
 
 
 
6aa4d81
 
 
 
ebc49ac
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import os
import sys
import random
import torch
from pathlib import Path
from PIL import Image
import gradio as gr
from huggingface_hub import hf_hub_download
import spaces
from typing import Union, Sequence, Mapping, Any
import folder_paths
from nodes import NODE_CLASS_MAPPINGS, init_extra_nodes
from comfy import model_management

# Configura莽茫o de diret贸rios
BASE_DIR = os.path.dirname(os.path.realpath(__file__))
output_dir = os.path.join(BASE_DIR, "output")
models_dir = os.path.join(BASE_DIR, "models")
os.makedirs(output_dir, exist_ok=True)
os.makedirs(models_dir, exist_ok=True)

# Configurar caminhos dos modelos
for model_folder in ["style_models", "text_encoders", "vae", "unet", "clip_vision"]:
    folder_path = os.path.join(models_dir, model_folder)
    os.makedirs(folder_path, exist_ok=True)
    folder_paths.add_model_folder_path(model_folder, folder_path)

# Download dos modelos
print("Baixando modelos necess谩rios...")
hf_hub_download(repo_id="black-forest-labs/FLUX.1-Redux-dev", 
                filename="flux1-redux-dev.safetensors", 
                local_dir=os.path.join(models_dir, "style_models"))
hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", 
                filename="t5xxl_fp16.safetensors", 
                local_dir=os.path.join(models_dir, "text_encoders"))
hf_hub_download(repo_id="zer0int/CLIP-GmP-ViT-L-14", 
                filename="ViT-L-14-TEXT-detail-improved-hiT-GmP-TE-only-HF.safetensors", 
                local_dir=os.path.join(models_dir, "text_encoders"))
hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev", 
                filename="ae.safetensors", 
                local_dir=os.path.join(models_dir, "vae"))
hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev", 
                filename="flux1-dev.safetensors", 
                local_dir=os.path.join(models_dir, "unet"))
hf_hub_download(repo_id="google/siglip-so400m-patch14-384", 
                filename="model.safetensors", 
                local_dir=os.path.join(models_dir, "clip_vision"))

# Diagn贸stico CUDA
print("Python version:", sys.version)
print("Torch version:", torch.__version__)
print("CUDA dispon铆vel:", torch.cuda.is_available())
print("Quantidade de GPUs:", torch.cuda.device_count())
if torch.cuda.is_available():
    print("GPU atual:", torch.cuda.get_device_name(0))

# Inicializar n贸s extras
print("Inicializando ComfyUI...")
init_extra_nodes()

# Helper function
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
    try:
        return obj[index]
    except KeyError:
        return obj["result"][index]

# Inicializar modelos
print("Inicializando modelos...")
with torch.inference_mode():
    # CLIP
    dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]()
    CLIP_MODEL = dualcliploader.load_clip(
        clip_name1="t5xxl_fp16.safetensors",
        clip_name2="ViT-L-14-TEXT-detail-improved-hiT-GmP-TE-only-HF.safetensors",
        type="flux"
    )

    # Style Model
    stylemodelloader = NODE_CLASS_MAPPINGS["StyleModelLoader"]()
    STYLE_MODEL = stylemodelloader.load_style_model(
        style_model_name="flux1-redux-dev.safetensors"
    )

    # VAE
    vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
    VAE_MODEL = vaeloader.load_vae(
        vae_name="ae.safetensors"
    )

    # UNET
    unetloader = NODE_CLASS_MAPPINGS["UNETLoader"]()
    UNET_MODEL = unetloader.load_unet(
        unet_name="flux1-dev.safetensors",
        weight_dtype="fp8_e4m3fn"
    )

    # CLIP Vision
    clipvisionloader = NODE_CLASS_MAPPINGS["CLIPVisionLoader"]()
    CLIP_VISION = clipvisionloader.load_clip(
        clip_name="sigclip_vision_patch14_384.safetensors"
    )

model_loaders = [CLIP_MODEL, VAE_MODEL, UNET_MODEL, CLIP_VISION]
model_management.load_models_gpu([
    loader[0].patcher if hasattr(loader[0], 'patcher') else loader[0] 
    for loader in model_loaders
])

@spaces.GPU
def generate_image(prompt, input_image, lora_weight, guidance, downsampling_factor, weight, seed, width, height, batch_size, steps, progress=gr.Progress(track_tqdm=True)):
    try:
        with torch.inference_mode():
            # Text Encoding
            cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
            encoded_text = cliptextencode.encode(
                text=prompt,
                clip=CLIP_MODEL[0]
            )

            # Load Input Image
            loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
            loaded_image = loadimage.load_image(image=input_image)

            # Load LoRA
            loraloadermodelonly = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]()
            lora_model = loraloadermodelonly.load_lora_model_only(
                lora_name="NFTNIK_FLUX.1[dev]_LoRA.safetensors",
                strength_model=lora_weight,
                model=UNET_MODEL[0]
            )

            # Flux Guidance
            fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]()
            flux_guidance = fluxguidance.append(
                guidance=guidance,
                conditioning=encoded_text[0]
            )

            # Redux Advanced
            reduxadvanced = NODE_CLASS_MAPPINGS["ReduxAdvanced"]()
            redux_result = reduxadvanced.apply_stylemodel(
                downsampling_factor=downsampling_factor,
                downsampling_function="area",
                mode="keep aspect ratio",
                weight=weight,
                autocrop_margin=0.1,
                conditioning=flux_guidance[0],
                style_model=STYLE_MODEL[0],
                clip_vision=CLIP_VISION[0],
                image=loaded_image[0]
            )

            # Empty Latent Image
            emptylatentimage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]()
            empty_latent = emptylatentimage.generate(
                width=width,
                height=height,
                batch_size=batch_size
            )

            # KSampler
            ksampler = NODE_CLASS_MAPPINGS["KSampler"]()
            sampled = ksampler.sample(
                seed=seed,
                steps=steps,
                cfg=1,
                sampler_name="euler",
                scheduler="simple",
                denoise=1,
                model=lora_model[0],
                positive=redux_result[0],
                negative=flux_guidance[0],
                latent_image=empty_latent[0]
            )

            # VAE Decode
            vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
            decoded = vaedecode.decode(
                samples=sampled[0],
                vae=VAE_MODEL[0]
            )

            # Salvar imagem
            temp_filename = f"Flux_{random.randint(0, 99999)}.png"
            temp_path = os.path.join(output_dir, temp_filename)
            Image.fromarray((decoded[0] * 255).astype("uint8")).save(temp_path)

            return temp_path

    except Exception as e:
        print(f"Erro ao gerar imagem: {str(e)}")
        return None

# Interface Gradio
with gr.Blocks() as app:
    gr.Markdown("# FLUX Redux Image Generator")
    
    with gr.Row():
        with gr.Column():
            prompt_input = gr.Textbox(
                label="Prompt",
                placeholder="Enter your prompt here...",
                lines=5
            )
            input_image = gr.Image(
                label="Input Image",
                type="filepath"
            )
            
            with gr.Row():
                with gr.Column():
                    lora_weight = gr.Slider(
                        minimum=0,
                        maximum=2,
                        step=0.1,
                        value=0.6,
                        label="LoRA Weight"
                    )
                    guidance = gr.Slider(
                        minimum=0,
                        maximum=20,
                        step=0.1,
                        value=3.5,
                        label="Guidance"
                    )
                    downsampling_factor = gr.Slider(
                        minimum=1,
                        maximum=8,
                        step=1,
                        value=3,
                        label="Downsampling Factor"
                    )
                    weight = gr.Slider(
                        minimum=0,
                        maximum=2,
                        step=0.1,
                        value=1.0,
                        label="Model Weight"
                    )
                with gr.Column():
                    seed = gr.Number(
                        value=random.randint(1, 2**64),
                        label="Seed",
                        precision=0
                    )
                    width = gr.Number(
                        value=1024,
                        label="Width",
                        precision=0
                    )
                    height = gr.Number(
                        value=1024,
                        label="Height",
                        precision=0
                    )
                    batch_size = gr.Number(
                        value=1,
                        label="Batch Size",
                        precision=0
                    )
                    steps = gr.Number(
                        value=20,
                        label="Steps",
                        precision=0
                    )
            
            generate_btn = gr.Button("Generate Image")
        
        with gr.Column():
            output_image = gr.Image(label="Generated Image", type="filepath")
    
    generate_btn.click(
        fn=generate_image,
        inputs=[
            prompt_input,
            input_image,
            lora_weight,
            guidance,
            downsampling_factor,
            weight,
            seed,
            width,
            height,
            batch_size,
            steps
        ],
        outputs=[output_image]
    )

if __name__ == "__main__":
    app.launch()