Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,25 +1,29 @@
|
|
1 |
import os
|
|
|
2 |
import random
|
3 |
import torch
|
4 |
from pathlib import Path
|
5 |
from PIL import Image
|
6 |
import gradio as gr
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
-
import
|
|
|
9 |
|
10 |
-
# 1. Configuração de Caminhos
|
11 |
current_dir = os.path.dirname(os.path.abspath(__file__))
|
12 |
comfyui_path = os.path.join(current_dir, "ComfyUI")
|
13 |
sys.path.append(comfyui_path)
|
14 |
|
15 |
# 2. Imports do ComfyUI
|
16 |
-
from nodes import NODE_CLASS_MAPPINGS
|
17 |
import folder_paths
|
|
|
18 |
|
19 |
# 3. Configuração de Diretórios
|
20 |
BASE_DIR = os.path.dirname(os.path.realpath(__file__))
|
21 |
output_dir = os.path.join(BASE_DIR, "output")
|
|
|
22 |
os.makedirs(output_dir, exist_ok=True)
|
|
|
23 |
folder_paths.set_output_directory(output_dir)
|
24 |
|
25 |
# 4. Diagnóstico CUDA
|
@@ -29,102 +33,90 @@ print("CUDA disponível:", torch.cuda.is_available())
|
|
29 |
print("Quantidade de GPUs:", torch.cuda.device_count())
|
30 |
if torch.cuda.is_available():
|
31 |
print("GPU atual:", torch.cuda.get_device_name(0))
|
32 |
-
else:
|
33 |
-
print("GPU não disponível. Usando CPU.")
|
34 |
|
35 |
-
# 5.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
def download_models():
|
|
|
37 |
models = [
|
38 |
("black-forest-labs/FLUX.1-Redux-dev", "flux1-redux-dev.safetensors", "style_models"),
|
39 |
("comfyanonymous/flux_text_encoders", "t5xxl_fp16.safetensors", "text_encoders"),
|
40 |
-
("zer0int/CLIP-GmP-ViT-L-14", "ViT-L-14-TEXT-detail-improved-hiT-GmP-
|
41 |
("black-forest-labs/FLUX.1-dev", "ae.safetensors", "vae"),
|
42 |
-
("black-forest-labs/FLUX.1-dev", "flux1-dev.
|
43 |
-
("google/siglip-so400m-patch14-384", "model.safetensors", "clip_vision")
|
44 |
-
("black-forest-labs/FLUX.1-Redux-dev", "NFTNIK_FLUX.1[dev]_LoRA.safetensors", "lora")
|
45 |
]
|
46 |
|
47 |
for repo_id, filename, model_type in models:
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
#
|
55 |
-
|
56 |
-
|
57 |
-
import execution
|
58 |
-
from nodes import init_extra_nodes
|
59 |
-
import server
|
60 |
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
67 |
|
68 |
-
#
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
with torch.inference_mode():
|
74 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
75 |
-
print(f"Using device: {device}")
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
type="flux",
|
83 |
-
device=device
|
84 |
-
)
|
85 |
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
87 |
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
|
88 |
encoded_text = cliptextencode.encode(
|
89 |
text=prompt,
|
90 |
-
clip=
|
91 |
)
|
92 |
|
93 |
-
#
|
94 |
-
stylemodelloader = NODE_CLASS_MAPPINGS["StyleModelLoader"]()
|
95 |
-
style_model = stylemodelloader.load_style_model(
|
96 |
-
style_model_name="flux1-redux-dev.safetensors"
|
97 |
-
)
|
98 |
-
|
99 |
-
# Load CLIP Vision
|
100 |
-
clipvisionloader = NODE_CLASS_MAPPINGS["CLIPVisionLoader"]()
|
101 |
-
clip_vision = clipvisionloader.load_clip(
|
102 |
-
clip_name="model.safetensors"
|
103 |
-
)
|
104 |
-
|
105 |
-
# Load Input Image
|
106 |
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
|
107 |
loaded_image = loadimage.load_image(image=input_image)
|
108 |
|
109 |
-
# Load VAE
|
110 |
-
vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
|
111 |
-
vae = vaeloader.load_vae(vae_name="ae.safetensors")
|
112 |
-
|
113 |
-
# Load UNET
|
114 |
-
unetloader = NODE_CLASS_MAPPINGS["UNETLoader"]()
|
115 |
-
unet = unetloader.load_unet(
|
116 |
-
unet_name="flux1-dev.sft",
|
117 |
-
weight_dtype="fp8_e4m3fn"
|
118 |
-
)
|
119 |
-
|
120 |
-
# Load LoRA
|
121 |
-
loraloadermodelonly = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]()
|
122 |
-
lora_model = loraloadermodelonly.load_lora_model_only(
|
123 |
-
lora_name="NFTNIK_FLUX.1[dev]_LoRA.safetensors",
|
124 |
-
strength_model=lora_weight,
|
125 |
-
model=unet[0]
|
126 |
-
)
|
127 |
-
|
128 |
# Flux Guidance
|
129 |
fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]()
|
130 |
flux_guidance = fluxguidance.append(
|
@@ -139,14 +131,13 @@ def generate_image(prompt, input_image, lora_weight, guidance, downsampling_fact
|
|
139 |
downsampling_function="area",
|
140 |
mode="keep aspect ratio",
|
141 |
weight=weight,
|
142 |
-
autocrop_margin=0.1,
|
143 |
conditioning=flux_guidance[0],
|
144 |
-
style_model=
|
145 |
clip_vision=clip_vision[0],
|
146 |
image=loaded_image[0]
|
147 |
)
|
148 |
|
149 |
-
# Empty Latent
|
150 |
emptylatentimage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]()
|
151 |
empty_latent = emptylatentimage.generate(
|
152 |
width=width,
|
@@ -163,49 +154,30 @@ def generate_image(prompt, input_image, lora_weight, guidance, downsampling_fact
|
|
163 |
sampler_name="euler",
|
164 |
scheduler="simple",
|
165 |
denoise=1,
|
166 |
-
model=
|
167 |
positive=redux_result[0],
|
168 |
negative=flux_guidance[0],
|
169 |
latent_image=empty_latent[0]
|
170 |
)
|
171 |
|
172 |
-
# VAE
|
173 |
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
|
174 |
decoded = vaedecode.decode(
|
175 |
samples=sampled[0],
|
176 |
-
vae=
|
177 |
-
)
|
178 |
-
|
179 |
-
# Save the image in the output directory
|
180 |
-
saveimage = NODE_CLASS_MAPPINGS["SaveImage"]()
|
181 |
-
temp_filename = f"Flux_{random.randint(0, 99999)}"
|
182 |
-
saveimage.save_images(
|
183 |
-
filename_prefix=temp_filename,
|
184 |
-
images=decoded[0]
|
185 |
)
|
186 |
|
187 |
-
#
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
# Dynamically retrieve the correct file name
|
192 |
-
saved_files = [f for f in os.listdir(output_dir) if f.startswith(temp_filename)]
|
193 |
-
if not saved_files:
|
194 |
-
raise FileNotFoundError(f"Output file not found: Expected files starting with {temp_filename}")
|
195 |
-
|
196 |
-
# Get the full path of the saved file
|
197 |
-
temp_path = os.path.join(output_dir, saved_files[0])
|
198 |
-
print(f"Image saved at: {temp_path}")
|
199 |
-
|
200 |
-
# Return the saved image for Gradio display
|
201 |
-
output_image = Image.open(temp_path)
|
202 |
-
return output_image
|
203 |
|
|
|
204 |
except Exception as e:
|
205 |
-
print(f"
|
206 |
return None
|
207 |
|
208 |
-
#
|
209 |
with gr.Blocks() as app:
|
210 |
gr.Markdown("# FLUX Redux Image Generator")
|
211 |
|
@@ -281,7 +253,7 @@ with gr.Blocks() as app:
|
|
281 |
generate_btn = gr.Button("Generate Image")
|
282 |
|
283 |
with gr.Column():
|
284 |
-
output_image = gr.Image(label="Generated Image", type="
|
285 |
|
286 |
generate_btn.click(
|
287 |
fn=generate_image,
|
@@ -302,5 +274,4 @@ with gr.Blocks() as app:
|
|
302 |
)
|
303 |
|
304 |
if __name__ == "__main__":
|
305 |
-
# Download_models()
|
306 |
app.launch(share=True)
|
|
|
1 |
import os
|
2 |
+
import sys
|
3 |
import random
|
4 |
import torch
|
5 |
from pathlib import Path
|
6 |
from PIL import Image
|
7 |
import gradio as gr
|
8 |
from huggingface_hub import hf_hub_download
|
9 |
+
import spaces
|
10 |
+
from typing import Union, Sequence, Mapping, Any
|
11 |
|
12 |
+
# 1. Configuração de Caminhos e Imports
|
13 |
current_dir = os.path.dirname(os.path.abspath(__file__))
|
14 |
comfyui_path = os.path.join(current_dir, "ComfyUI")
|
15 |
sys.path.append(comfyui_path)
|
16 |
|
17 |
# 2. Imports do ComfyUI
|
|
|
18 |
import folder_paths
|
19 |
+
from nodes import NODE_CLASS_MAPPINGS, init_extra_nodes
|
20 |
|
21 |
# 3. Configuração de Diretórios
|
22 |
BASE_DIR = os.path.dirname(os.path.realpath(__file__))
|
23 |
output_dir = os.path.join(BASE_DIR, "output")
|
24 |
+
models_dir = os.path.join(BASE_DIR, "models")
|
25 |
os.makedirs(output_dir, exist_ok=True)
|
26 |
+
os.makedirs(models_dir, exist_ok=True)
|
27 |
folder_paths.set_output_directory(output_dir)
|
28 |
|
29 |
# 4. Diagnóstico CUDA
|
|
|
33 |
print("Quantidade de GPUs:", torch.cuda.device_count())
|
34 |
if torch.cuda.is_available():
|
35 |
print("GPU atual:", torch.cuda.get_device_name(0))
|
|
|
|
|
36 |
|
37 |
+
# 5. Inicialização do ComfyUI
|
38 |
+
print("Inicializando ComfyUI...")
|
39 |
+
init_extra_nodes()
|
40 |
+
|
41 |
+
# 6. Helper Functions
|
42 |
+
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
|
43 |
+
try:
|
44 |
+
return obj[index]
|
45 |
+
except KeyError:
|
46 |
+
return obj["result"][index]
|
47 |
+
|
48 |
+
# 7. Download de Modelos
|
49 |
def download_models():
|
50 |
+
print("Baixando modelos...")
|
51 |
models = [
|
52 |
("black-forest-labs/FLUX.1-Redux-dev", "flux1-redux-dev.safetensors", "style_models"),
|
53 |
("comfyanonymous/flux_text_encoders", "t5xxl_fp16.safetensors", "text_encoders"),
|
54 |
+
("zer0int/CLIP-GmP-ViT-L-14", "ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors", "text_encoders"),
|
55 |
("black-forest-labs/FLUX.1-dev", "ae.safetensors", "vae"),
|
56 |
+
("black-forest-labs/FLUX.1-dev", "flux1-dev.safetensors", "diffusion_models"),
|
57 |
+
("google/siglip-so400m-patch14-384", "model.safetensors", "clip_vision")
|
|
|
58 |
]
|
59 |
|
60 |
for repo_id, filename, model_type in models:
|
61 |
+
try:
|
62 |
+
model_dir = os.path.join(models_dir, model_type)
|
63 |
+
os.makedirs(model_dir, exist_ok=True)
|
64 |
+
print(f"Baixando {filename} de {repo_id}...")
|
65 |
+
hf_hub_download(repo_id=repo_id, filename=filename, local_dir=model_dir)
|
66 |
+
# Adicionar o diretório ao folder_paths
|
67 |
+
folder_paths.add_model_folder_path(model_type, model_dir)
|
68 |
+
except Exception as e:
|
69 |
+
print(f"Erro ao baixar {filename} de {repo_id}: {str(e)}")
|
70 |
+
continue
|
71 |
|
72 |
+
# 8. Download e Inicialização dos Modelos
|
73 |
+
print("Baixando modelos...")
|
74 |
+
download_models()
|
|
|
|
|
|
|
75 |
|
76 |
+
print("Inicializando modelos...")
|
77 |
+
with torch.inference_mode():
|
78 |
+
# CLIP
|
79 |
+
dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]()
|
80 |
+
dualcliploader_357 = dualcliploader.load_clip(
|
81 |
+
clip_name1="t5xxl_fp16.safetensors",
|
82 |
+
clip_name2="ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors",
|
83 |
+
type="flux"
|
84 |
+
)
|
85 |
|
86 |
+
# CLIP Vision
|
87 |
+
clipvisionloader = NODE_CLASS_MAPPINGS["CLIPVisionLoader"]()
|
88 |
+
clip_vision = clipvisionloader.load_clip(
|
89 |
+
clip_name="model.safetensors"
|
90 |
+
)
|
91 |
|
92 |
+
# Style Model
|
93 |
+
stylemodelloader = NODE_CLASS_MAPPINGS["StyleModelLoader"]()
|
94 |
+
stylemodelloader_441 = stylemodelloader.load_style_model(
|
95 |
+
style_model_name="flux1-redux-dev.safetensors"
|
96 |
+
)
|
|
|
|
|
|
|
97 |
|
98 |
+
# VAE
|
99 |
+
vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
|
100 |
+
vaeloader_359 = vaeloader.load_vae(
|
101 |
+
vae_name="ae.safetensors"
|
102 |
+
)
|
|
|
|
|
|
|
103 |
|
104 |
+
# 9. Função de Geração
|
105 |
+
@spaces.GPU
|
106 |
+
def generate_image(prompt, input_image, lora_weight, guidance, downsampling_factor, weight, seed, width, height, batch_size, steps, progress=gr.Progress(track_tqdm=True)):
|
107 |
+
try:
|
108 |
+
with torch.inference_mode():
|
109 |
+
# Codificar texto
|
110 |
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
|
111 |
encoded_text = cliptextencode.encode(
|
112 |
text=prompt,
|
113 |
+
clip=dualcliploader_357[0]
|
114 |
)
|
115 |
|
116 |
+
# Carregar e processar imagem
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
|
118 |
loaded_image = loadimage.load_image(image=input_image)
|
119 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
# Flux Guidance
|
121 |
fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]()
|
122 |
flux_guidance = fluxguidance.append(
|
|
|
131 |
downsampling_function="area",
|
132 |
mode="keep aspect ratio",
|
133 |
weight=weight,
|
|
|
134 |
conditioning=flux_guidance[0],
|
135 |
+
style_model=stylemodelloader_441[0],
|
136 |
clip_vision=clip_vision[0],
|
137 |
image=loaded_image[0]
|
138 |
)
|
139 |
|
140 |
+
# Empty Latent
|
141 |
emptylatentimage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]()
|
142 |
empty_latent = emptylatentimage.generate(
|
143 |
width=width,
|
|
|
154 |
sampler_name="euler",
|
155 |
scheduler="simple",
|
156 |
denoise=1,
|
157 |
+
model=stylemodelloader_441[0],
|
158 |
positive=redux_result[0],
|
159 |
negative=flux_guidance[0],
|
160 |
latent_image=empty_latent[0]
|
161 |
)
|
162 |
|
163 |
+
# Decodificar VAE
|
164 |
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
|
165 |
decoded = vaedecode.decode(
|
166 |
samples=sampled[0],
|
167 |
+
vae=vaeloader_359[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
)
|
169 |
|
170 |
+
# Salvar imagem
|
171 |
+
temp_filename = f"Flux_{random.randint(0, 99999)}.png"
|
172 |
+
temp_path = os.path.join(output_dir, temp_filename)
|
173 |
+
Image.fromarray((decoded[0] * 255).astype("uint8")).save(temp_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
+
return temp_path
|
176 |
except Exception as e:
|
177 |
+
print(f"Erro ao gerar imagem: {str(e)}")
|
178 |
return None
|
179 |
|
180 |
+
# 10. Interface Gradio
|
181 |
with gr.Blocks() as app:
|
182 |
gr.Markdown("# FLUX Redux Image Generator")
|
183 |
|
|
|
253 |
generate_btn = gr.Button("Generate Image")
|
254 |
|
255 |
with gr.Column():
|
256 |
+
output_image = gr.Image(label="Generated Image", type="filepath")
|
257 |
|
258 |
generate_btn.click(
|
259 |
fn=generate_image,
|
|
|
274 |
)
|
275 |
|
276 |
if __name__ == "__main__":
|
|
|
277 |
app.launch(share=True)
|