Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,933 Bytes
6aa4d81 651b8c4 6aa4d81 0845b5a 6aa4d81 0c0098b 651b8c4 0c0098b a7d1628 651b8c4 0c0098b 651b8c4 0845b5a 0c0098b 0845b5a 0c0098b 0845b5a 0c0098b 5c1d384 651b8c4 0c0098b 0845b5a 651b8c4 0c0098b 0845b5a 0c0098b 0845b5a 16764be 0c0098b 0845b5a 5c1d384 0845b5a 16764be 0845b5a 0c0098b 0845b5a 16764be 0c0098b 0845b5a 5c1d384 0845b5a 0c0098b 0845b5a 5c1d384 0c0098b 0845b5a 0c0098b 0845b5a 0c0098b 0845b5a 0c0098b 0845b5a 0c0098b 0845b5a 651b8c4 6aa4d81 0845b5a 16764be 6aa4d81 0845b5a 16764be 0845b5a 16764be 0845b5a 16764be 0845b5a 16764be 0845b5a 16764be 0845b5a 16764be 0845b5a 16764be 0845b5a 16764be 0845b5a 16764be 0845b5a 16764be 0845b5a 16764be 0845b5a 16764be 0845b5a 16764be 0845b5a 16764be 0845b5a 16764be 0845b5a 16764be 0845b5a 16764be 0845b5a 16764be 0845b5a 16764be 0845b5a 0c0098b 0845b5a 6aa4d81 ebc49ac 6aa4d81 ebc49ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import os
import random
import sys
from typing import Sequence, Mapping, Any, Union
import torch
import gradio as gr
from huggingface_hub import hf_hub_download
import spaces
from PIL import Image
from folder_paths import folder_paths
# Append ComfyUI path to sys.path
current_dir = os.path.dirname(os.path.abspath(__file__))
comfyui_path = os.path.join(current_dir, "ComfyUI")
sys.path.append(comfyui_path)
# Import Comfy modules
from comfy import model_management
from nodes import NODE_CLASS_MAPPINGS
# Helper function to get values from objects
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
try:
return obj[index]
except KeyError:
return obj["result"][index]
# Download models from Hugging Face
def download_models():
models = [
("black-forest-labs/FLUX.1-Redux-dev", "flux1-redux-dev.safetensors", "style_models"),
("comfyanonymous/flux_text_encoders", "t5xxl_fp16.safetensors", "text_encoders"),
("zer0int/CLIP-GmP-ViT-L-14", "ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors", "text_encoders"),
("black-forest-labs/FLUX.1-dev", "ae.safetensors", "vae"),
("black-forest-labs/FLUX.1-dev", "flux1-dev.safetensors", "diffusion_models"),
("google/siglip-so400m-patch14-384", "model.safetensors", "clip_vision")
]
for repo_id, filename, model_type in models:
try:
model_dir = os.path.join(models_dir, model_type)
os.makedirs(model_dir, exist_ok=True)
print(f"Baixando {filename} de {repo_id}...")
hf_hub_download(repo_id=repo_id, filename=filename, local_dir=model_dir)
folder_paths.add_model_folder_path(model_type, model_dir)
except Exception as e:
print(f"Erro ao baixar {filename} de {repo_id}: {str(e)}")
continue
# Configuração de Diretórios
BASE_DIR = os.path.dirname(os.path.realpath(__file__))
output_dir = os.path.join(BASE_DIR, "output")
models_dir = os.path.join(BASE_DIR, "models")
os.makedirs(output_dir, exist_ok=True)
os.makedirs(models_dir, exist_ok=True)
folder_paths.set_output_directory(output_dir)
# Download and load models
download_models()
# Load models globally
intconstant = NODE_CLASS_MAPPINGS["INTConstant"]()
dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]()
dualcliploader_357 = dualcliploader.load_clip(
clip_name1="t5xxl_fp16.safetensors",
clip_name2="ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors",
type="flux"
)
clipvisionloader = NODE_CLASS_MAPPINGS["CLIPVisionLoader"]()
clip_vision = clipvisionloader.load_clip(
clip_name="model.safetensors"
)
stylemodelloader = NODE_CLASS_MAPPINGS["StyleModelLoader"]()
stylemodelloader_441 = stylemodelloader.load_style_model(
style_model_name="flux1-redux-dev.safetensors"
)
vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
vaeloader_359 = vaeloader.load_vae(
vae_name="ae.safetensors"
)
# Pre-load models
model_loaders = [dualcliploader_357, vaeloader_359, clip_vision, stylemodelloader_441]
valid_models = [
getattr(loader[0], 'patcher', loader[0])
for loader in model_loaders
if not isinstance(loader[0], dict) and not isinstance(getattr(loader[0], 'patcher', None), dict)
]
model_management.load_models_gpu(valid_models)
# Function to generate images
@spaces.GPU(duration=60) # Adjust duration as needed
def generate_image(prompt, input_image, lora_weight, guidance, downsampling_factor, weight, seed, width, height, batch_size, steps):
try:
with torch.inference_mode():
# Codificar texto
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
encoded_text = cliptextencode.encode(
text=prompt,
clip=dualcliploader_357[0]
)
# Carregar e processar imagem
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
loaded_image = loadimage.load_image(image=input_image)
# Flux Guidance
fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]()
flux_guidance = fluxguidance.append(
guidance=guidance,
conditioning=encoded_text[0]
)
# Redux Advanced
reduxadvanced = NODE_CLASS_MAPPINGS["ReduxAdvanced"]()
redux_result = reduxadvanced.apply_stylemodel(
downsampling_factor=downsampling_factor,
downsampling_function="area",
mode="keep aspect ratio",
weight=weight,
conditioning=flux_guidance[0],
style_model=stylemodelloader_441[0],
clip_vision=clip_vision[0],
image=loaded_image[0]
)
# Empty Latent
emptylatentimage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]()
empty_latent = emptylatentimage.generate(
width=width,
height=height,
batch_size=batch_size
)
# KSampler
ksampler = NODE_CLASS_MAPPINGS["KSampler"]()
sampled = ksampler.sample(
seed=seed,
steps=steps,
cfg=1,
sampler_name="euler",
scheduler="simple",
denoise=1,
model=stylemodelloader_441[0],
positive=redux_result[0],
negative=flux_guidance[0],
latent_image=empty_latent[0]
)
# Decodificar VAE
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
decoded = vaedecode.decode(
samples=sampled[0],
vae=vaeloader_359[0]
)
# Salvar imagem
temp_filename = f"Flux_{random.randint(0, 99999)}.png"
temp_path = os.path.join(output_dir, temp_filename)
Image.fromarray((decoded[0] * 255).astype("uint8")).save(temp_path)
return temp_path
except Exception as e:
print(f"Erro ao gerar imagem: {str(e)}")
return None
# Gradio Interface
with gr.Blocks() as app:
gr.Markdown("# FLUX Redux Image Generator")
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(
label="Prompt",
placeholder="Enter your prompt here...",
lines=5
)
input_image = gr.Image(
label="Input Image",
type="filepath"
)
with gr.Row():
with gr.Column():
lora_weight = gr.Slider(
minimum=0,
maximum=2,
step=0.1,
value=0.6,
label="LoRA Weight"
)
guidance = gr.Slider(
minimum=0,
maximum=20,
step=0.1,
value=3.5,
label="Guidance"
)
downsampling_factor = gr.Slider(
minimum=1,
maximum=8,
step=1,
value=3,
label="Downsampling Factor"
)
weight = gr.Slider(
minimum=0,
maximum=2,
step=0.1,
value=1.0,
label="Model Weight"
)
with gr.Column():
seed = gr.Number(
value=random.randint(1, 2**64),
label="Seed",
precision=0
)
width = gr.Number(
value=1024,
label="Width",
precision=0
)
height = gr.Number(
value=1024,
label="Height",
precision=0
)
batch_size = gr.Number(
value=1,
label="Batch Size",
precision=0
)
steps = gr.Number(
value=20,
label="Steps",
precision=0
)
generate_btn = gr.Button("Generate Image")
with gr.Column():
output_image = gr.Image(label="Generated Image", type="filepath")
generate_btn.click(
fn=generate_image,
inputs=[prompt_input, input_image, lora_weight, guidance, downsampling_factor, weight, seed, width, height, batch_size, steps],
outputs=[output_image]
)
if __name__ == "__main__":
app.launch() |