File size: 8,933 Bytes
6aa4d81
 
651b8c4
 
6aa4d81
0845b5a
6aa4d81
0c0098b
651b8c4
 
0c0098b
a7d1628
 
 
 
 
 
 
 
 
651b8c4
0c0098b
 
 
 
 
 
651b8c4
0845b5a
 
 
 
0c0098b
0845b5a
0c0098b
 
0845b5a
 
 
0c0098b
 
 
 
 
 
 
 
 
5c1d384
651b8c4
 
 
 
 
 
 
 
 
0c0098b
0845b5a
651b8c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c0098b
 
 
0845b5a
 
 
0c0098b
0845b5a
16764be
0c0098b
0845b5a
 
5c1d384
0845b5a
 
 
 
 
 
16764be
0845b5a
 
 
 
 
 
 
 
0c0098b
0845b5a
 
 
16764be
0c0098b
0845b5a
 
 
 
 
 
5c1d384
0845b5a
 
 
 
 
 
 
 
 
0c0098b
0845b5a
 
 
 
5c1d384
0c0098b
0845b5a
 
 
0c0098b
0845b5a
 
0c0098b
 
 
 
0845b5a
0c0098b
0845b5a
0c0098b
0845b5a
 
651b8c4
6aa4d81
0845b5a
16764be
6aa4d81
0845b5a
 
16764be
 
 
 
0845b5a
 
 
 
16764be
0845b5a
 
 
16764be
 
 
 
 
 
0845b5a
16764be
 
 
 
 
 
0845b5a
 
16764be
 
 
0845b5a
16764be
0845b5a
16764be
 
 
 
0845b5a
16764be
0845b5a
 
16764be
0845b5a
16764be
 
0845b5a
16764be
0845b5a
16764be
 
0845b5a
16764be
0845b5a
16764be
 
0845b5a
16764be
0845b5a
16764be
 
0845b5a
16764be
0845b5a
16764be
 
 
0845b5a
16764be
0845b5a
0c0098b
0845b5a
6aa4d81
 
ebc49ac
6aa4d81
 
 
 
ebc49ac
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import os
import random
import sys
from typing import Sequence, Mapping, Any, Union
import torch
import gradio as gr
from huggingface_hub import hf_hub_download
import spaces
from PIL import Image
from folder_paths import folder_paths

# Append ComfyUI path to sys.path
current_dir = os.path.dirname(os.path.abspath(__file__))
comfyui_path = os.path.join(current_dir, "ComfyUI")
sys.path.append(comfyui_path)

# Import Comfy modules
from comfy import model_management
from nodes import NODE_CLASS_MAPPINGS

# Helper function to get values from objects
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
    try:
        return obj[index]
    except KeyError:
        return obj["result"][index]

# Download models from Hugging Face
def download_models():
    models = [
        ("black-forest-labs/FLUX.1-Redux-dev", "flux1-redux-dev.safetensors", "style_models"),
        ("comfyanonymous/flux_text_encoders", "t5xxl_fp16.safetensors", "text_encoders"),
        ("zer0int/CLIP-GmP-ViT-L-14", "ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors", "text_encoders"),
        ("black-forest-labs/FLUX.1-dev", "ae.safetensors", "vae"),
        ("black-forest-labs/FLUX.1-dev", "flux1-dev.safetensors", "diffusion_models"),
        ("google/siglip-so400m-patch14-384", "model.safetensors", "clip_vision")
    ]
    
    for repo_id, filename, model_type in models:
        try:
            model_dir = os.path.join(models_dir, model_type)
            os.makedirs(model_dir, exist_ok=True)
            print(f"Baixando {filename} de {repo_id}...")
            hf_hub_download(repo_id=repo_id, filename=filename, local_dir=model_dir)
            folder_paths.add_model_folder_path(model_type, model_dir)
        except Exception as e:
            print(f"Erro ao baixar {filename} de {repo_id}: {str(e)}")
            continue

# Configuração de Diretórios
BASE_DIR = os.path.dirname(os.path.realpath(__file__))
output_dir = os.path.join(BASE_DIR, "output")
models_dir = os.path.join(BASE_DIR, "models")
os.makedirs(output_dir, exist_ok=True)
os.makedirs(models_dir, exist_ok=True)
folder_paths.set_output_directory(output_dir)

# Download and load models
download_models()

# Load models globally
intconstant = NODE_CLASS_MAPPINGS["INTConstant"]()
dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]()
dualcliploader_357 = dualcliploader.load_clip(
    clip_name1="t5xxl_fp16.safetensors",
    clip_name2="ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors",
    type="flux"
)
clipvisionloader = NODE_CLASS_MAPPINGS["CLIPVisionLoader"]()
clip_vision = clipvisionloader.load_clip(
    clip_name="model.safetensors"
)
stylemodelloader = NODE_CLASS_MAPPINGS["StyleModelLoader"]()
stylemodelloader_441 = stylemodelloader.load_style_model(
    style_model_name="flux1-redux-dev.safetensors"
)
vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
vaeloader_359 = vaeloader.load_vae(
    vae_name="ae.safetensors"
)

# Pre-load models
model_loaders = [dualcliploader_357, vaeloader_359, clip_vision, stylemodelloader_441]
valid_models = [
    getattr(loader[0], 'patcher', loader[0]) 
    for loader in model_loaders
    if not isinstance(loader[0], dict) and not isinstance(getattr(loader[0], 'patcher', None), dict)
]
model_management.load_models_gpu(valid_models)

# Function to generate images
@spaces.GPU(duration=60)  # Adjust duration as needed
def generate_image(prompt, input_image, lora_weight, guidance, downsampling_factor, weight, seed, width, height, batch_size, steps):
    try:
        with torch.inference_mode():
            # Codificar texto
            cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
            encoded_text = cliptextencode.encode(
                text=prompt,
                clip=dualcliploader_357[0]
            )

            # Carregar e processar imagem
            loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
            loaded_image = loadimage.load_image(image=input_image)

            # Flux Guidance
            fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]()
            flux_guidance = fluxguidance.append(
                guidance=guidance,
                conditioning=encoded_text[0]
            )

            # Redux Advanced
            reduxadvanced = NODE_CLASS_MAPPINGS["ReduxAdvanced"]()
            redux_result = reduxadvanced.apply_stylemodel(
                downsampling_factor=downsampling_factor,
                downsampling_function="area",
                mode="keep aspect ratio",
                weight=weight,
                conditioning=flux_guidance[0],
                style_model=stylemodelloader_441[0],
                clip_vision=clip_vision[0],
                image=loaded_image[0]
            )

            # Empty Latent
            emptylatentimage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]()
            empty_latent = emptylatentimage.generate(
                width=width,
                height=height,
                batch_size=batch_size
            )

            # KSampler
            ksampler = NODE_CLASS_MAPPINGS["KSampler"]()
            sampled = ksampler.sample(
                seed=seed,
                steps=steps,
                cfg=1,
                sampler_name="euler",
                scheduler="simple",
                denoise=1,
                model=stylemodelloader_441[0],
                positive=redux_result[0],
                negative=flux_guidance[0],
                latent_image=empty_latent[0]
            )

            # Decodificar VAE
            vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
            decoded = vaedecode.decode(
                samples=sampled[0],
                vae=vaeloader_359[0]
            )

            # Salvar imagem
            temp_filename = f"Flux_{random.randint(0, 99999)}.png"
            temp_path = os.path.join(output_dir, temp_filename)
            Image.fromarray((decoded[0] * 255).astype("uint8")).save(temp_path)

            return temp_path
    except Exception as e:
        print(f"Erro ao gerar imagem: {str(e)}")
        return None

# Gradio Interface
with gr.Blocks() as app:
    gr.Markdown("# FLUX Redux Image Generator")
    
    with gr.Row():
        with gr.Column():
            prompt_input = gr.Textbox(
                label="Prompt",
                placeholder="Enter your prompt here...",
                lines=5
            )
            input_image = gr.Image(
                label="Input Image",
                type="filepath"
            )
            
            with gr.Row():
                with gr.Column():
                    lora_weight = gr.Slider(
                        minimum=0,
                        maximum=2,
                        step=0.1,
                        value=0.6,
                        label="LoRA Weight"
                    )
                    guidance = gr.Slider(
                        minimum=0,
                        maximum=20,
                        step=0.1,
                        value=3.5,
                        label="Guidance"
                    )
                    downsampling_factor = gr.Slider(
                        minimum=1,
                        maximum=8,
                        step=1,
                        value=3,
                        label="Downsampling Factor"
                    )
                    weight = gr.Slider(
                        minimum=0,
                        maximum=2,
                        step=0.1,
                        value=1.0,
                        label="Model Weight"
                    )
                with gr.Column():
                    seed = gr.Number(
                        value=random.randint(1, 2**64),
                        label="Seed",
                        precision=0
                    )
                    width = gr.Number(
                        value=1024,
                        label="Width",
                        precision=0
                    )
                    height = gr.Number(
                        value=1024,
                        label="Height",
                        precision=0
                    )
                    batch_size = gr.Number(
                        value=1,
                        label="Batch Size",
                        precision=0
                    )
                    steps = gr.Number(
                        value=20,
                        label="Steps",
                        precision=0
                    )
            
            generate_btn = gr.Button("Generate Image")
        
        with gr.Column():
            output_image = gr.Image(label="Generated Image", type="filepath")
    
    generate_btn.click(
        fn=generate_image,
        inputs=[prompt_input, input_image, lora_weight, guidance, downsampling_factor, weight, seed, width, height, batch_size, steps],
        outputs=[output_image]
    )

if __name__ == "__main__":
    app.launch()