Spaces:
Runtime error
Runtime error
CoNR
CoNR: Collaborative Neural Rendering using Anime Character Sheets
Introduction
This project is the official implement of Collaborative Neural Rendering using Anime Character Sheets, which aims to genarate vivid dancing videos from hand-drawn anime character sheets(ACS). Watch more demos in our HomePage.
Usage
Prerequisites
- NVIDIA GPU + CUDA + CUDNN
- Python 3.6
Installation
- Clone this repository
git clone https://github.com/megvii-research/CoNR
- Dependencies
To install all the dependencies, please run the following commands.
cd CoNR
pip install -r requirements.txt
- Download Weights Download weights from Google Drive. Alternatively, you can download from Baidu Netdisk (password:RDxc).
mkdir weights && cd weights
wget https://drive.google.com/file/d/1M1LEpx70tJ72AIV2TQKr6NE_7mJ7tLYx/view?usp=sharing
wget https://drive.google.com/file/d/1YvZy3NHkJ6gC3pq_j8agcbEJymHCwJy0/view?usp=sharing
wget https://drive.google.com/file/d/1AOWZxBvTo9nUf2_9Y7Xe27ZFQuPrnx9i/view?usp=sharing
wget https://drive.google.com/file/d/19jM1-GcqgGoE1bjmQycQw_vqD9C5e-Jm/view?usp=sharing
Prepare inputs
We prepared two Ultra-Dense Pose sequences for two characters, you can generate more UDPs via 3D models and motions. Baidu Netdisk (password:RDxc)
# for short hair girl
wget https://drive.google.com/file/d/11HMSaEkN__QiAZSnCuaM6GI143xo62KO/view?usp=sharing
unzip short_hair.zip
mv short_hair/ poses/
# for double ponytail girl
wget https://drive.google.com/file/d/1WNnGVuU0ZLyEn04HzRKzITXqib1wwM4Q/view?usp=sharing
unzip double_ponytail.zip
mv double_ponytail/ poses/
We provide sample inputs of anime character sheets, you can also draw more by yourself.
# for short hair girl
wget https://drive.google.com/file/d/1r-3hUlENSWj81ve2IUPkRKNB81o9WrwT/view?usp=sharing
unzip short_hair_images.zip
mv short_hair_images/ character_sheet/
# for double ponytail girl
wget https://drive.google.com/file/d/1XMrJf9Lk_dWgXyTJhbEK2LZIXL9G3MWc/view?usp=sharing
unzip double_ponytail_images.zip
mv double_ponytail_images/ character_sheet/
RUN!
We provide two ways: with web UI or via terminal.
- with web UI (powered by Streamlit)
streamlit run streamlit.py --server_port=8501
then open your browser and visit localhost:8501
, follow the instructions to genarate video.
- via terminal
mkdir {dir_to_save_result}
python3 -m torch.distributed.launch \
--nproc_per_node=1 train.py --mode=test \
--world_size=1 --dataloaders=2 \
--test_input_poses_images={dir_to_poses} \
--test_input_person_images={dir_to_character_sheet} \
--test_output_dir={dir_to_save_result} \
--test_checkpoint_dir={dir_to_weights}
ffmpeg -r 30 -y -i {dir_to_save_result}/%d.png -r 30 -c:v libx264 output.mp4 -r 30