neuralworm's picture
update app.py, update requirements.txt
12da3d7
###############################################################################
# app.py – EAL Emergent-Discourse Analyzer (Gemma 1 / 2 / 3 compliant)
###############################################################################
import gc, io, json, re, time, base64
import torch, numpy as np, matplotlib, matplotlib.pyplot as plt, seaborn as sns
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.cluster import KMeans
matplotlib.use("Agg") # headless
# ──────────────────────────────────────────────────────────────────────────────
# 1 Β· Registry of models
# ──────────────────────────────────────────────────────────────────────────────
AVAILABLE_MODELS = {
"GPT-Neox-1.3B" : "EleutherAI/gpt-neo-1.3B",
"GPT-2" : "gpt2",
"Gemma 1.1 2B-IT" : "google/gemma-1.1-2b-it",
"Gemma 2 2B-IT" : "google/gemma-2-2b-it",
"Gemma 3 1B-IT" : "google/gemma-3-1b-it",
}
_loaded, _current = {}, None
dbg_log: list[str] = []
def dbg(msg: str) -> None:
ts = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
line = f"[{ts}] {msg}"
dbg_log.append(line)
print(line)
# ──────────────────────────────────────────────────────────────────────────────
# 2 Β· Loader helpers (BF16-aware & VRAM-safe)
# ──────────────────────────────────────────────────────────────────────────────
def _gpu_supports_bf16() -> bool:
if not torch.cuda.is_available(): return False
major, _ = torch.cuda.get_device_capability()
return major >= 8 # Ampere (8.0) or newer
def _unload_current():
global _current
if _current and _current in _loaded:
_loaded[_current]["model"].to("cpu")
torch.cuda.empty_cache(); gc.collect()
_current = None
def _load(name: str):
"""Lazy load or swap in the requested model."""
global tokenizer, model, MODEL_CTX, device, _current
if name == _current: return
dbg(f"[boot] switching β†’ {name}")
_unload_current()
if name in _loaded: # cached
obj = _loaded[name]
tokenizer, model, MODEL_CTX, device = obj["tok"], obj["model"], obj["ctx"], obj["dev"]
_current = name; return
repo = AVAILABLE_MODELS[name]
torch_dtype = torch.bfloat16 if _gpu_supports_bf16() else torch.float16
tok = AutoTokenizer.from_pretrained(repo, use_fast=True)
mdl = AutoModelForCausalLM.from_pretrained(repo, torch_dtype=torch_dtype)
dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
mdl.to(dev).eval()
ctx_raw = getattr(mdl.config, "max_position_embeddings", 2048)
ctx = int(min(ctx_raw, 8192)) # Gemma-3 reports 1e15 – clamp
if tok.pad_token is None:
tok.pad_token = tok.eos_token
mdl.config.pad_token_id = mdl.config.eos_token_id
_loaded[name] = {"tok": tok, "model": mdl, "ctx": ctx, "dev": dev}
tokenizer, model, MODEL_CTX, device, _current = tok, mdl, ctx, dev, name
dbg(f"[boot] {name} ready (ctx={ctx}, dev={dev}, dtype={torch_dtype})")
# prime default
_load("GPT-Neox-1.3B")
# ──────────────────────────────────────────────────────────────────────────────
# 3 Β· Utility fns (unchanged)
# ──────────────────────────────────────────────────────────────────────────────
PROMPT_HEADROOM, MAX_GEN = 300, 100
_q = re.compile(r'"')
def esc(t): return _q.sub('\\"', t)
def trim(t, rv=80):
toks = tokenizer.encode(t, add_special_tokens=False)
keep = MODEL_CTX - PROMPT_HEADROOM - rv
return tokenizer.decode(toks[-keep:], skip_special_tokens=True) if len(toks) > keep else t
def cosine(a, b):
noisy = ("[Generation Error", "[Context window full]", "[Model not")
if any(m in a for m in noisy) or any(m in b for m in noisy): return 0.0
with torch.inference_mode():
emb = model.get_input_embeddings()
ta = emb(tokenizer(a, return_tensors="pt").to(device).input_ids).mean(1)
tb = emb(tokenizer(b, return_tensors="pt").to(device).input_ids).mean(1)
return max(min(float(cosine_similarity(ta.cpu(), tb.cpu())[0,0]),1),-1)
def generate(prompt, temp):
dbg(f"PROMPT >>> {prompt}")
with torch.inference_mode():
inp = tokenizer(prompt, return_tensors="pt").to(device)
out = model.generate(
**inp,
max_length=min(inp.input_ids.size(1)+MAX_GEN, MODEL_CTX),
temperature=temp, top_p=0.9,
repetition_penalty=1.2, no_repeat_ngram_size=3,
pad_token_id=tokenizer.pad_token_id,
)
ans = tokenizer.decode(out[0][inp.input_ids.size(1):], skip_special_tokens=True).strip()
dbg(f"OUTPUT <<< {ans}")
return ans or "[Empty]"
def heat(mat, labels, title):
mask=np.isnan(mat)
fig, ax=plt.subplots(figsize=(max(8,len(labels)), max(7,len(labels)*0.9)))
sns.heatmap(mat,mask=mask,annot=True,cmap="plasma",fmt=".2f",
vmin=np.nanmin(mat)*0.97,vmax=1,annot_kws={"size":7},
xticklabels=labels, yticklabels=labels, ax=ax)
plt.xticks(rotation=45,ha="right"); plt.yticks(rotation=0)
ax.set_title(title,pad=18); plt.tight_layout(pad=2.3)
buf=io.BytesIO(); plt.savefig(buf,format="png"); plt.close(fig); buf.seek(0)
return f"<img src='data:image/png;base64,{base64.b64encode(buf.read()).decode()}' style='max-width:95%;height:auto;'/>"
# ──────────────────────────────────────────────────────────────────────────────
# 4 Β· Main EAL routine (unchanged logic)
# ──────────────────────────────────────────────────────────────────────────────
def run_eal(iters:int, mdl:str, prog=gr.Progress()):
dbg_log.clear(); _load(mdl)
I,nI,dI,dnI,dx=[None]*iters,[None]*iters,[None]*iters,[None]*iters,[None]*iters
seed="A thinking process begins. The first thought is:"
for k in range(iters):
prm = seed if not k else (
f'The thought process previously generated: "{esc(trim(I[k-1],60))}"\n\n'
"Task: Continue this line of thought. What logically follows or develops?"
)
I[k]=generate(prm,0.7)
prm_n=(f'Consider the statement: "{esc(trim(I[k],80))}"\n\n'
"Task: Explore alternative perspectives or potential issues. "
"What might be a contrasting viewpoint or an overlooked aspect?")
nI[k]=generate(prm_n,0.9)
if k: dI[k]=cosine(I[k-1],I[k]); dnI[k]=cosine(nI[k-1],nI[k])
dx[k]=cosine(I[k],nI[k]); prog((k+1)/iters)
# clusters
labels=[f"I{k}" for k in range(iters)]+[f"Β¬I{k}" for k in range(iters)]
vecs,lab=[],[]
with torch.inference_mode():
emb=model.get_input_embeddings()
for t,l in zip(I+nI,labels):
if t.startswith("["):continue
vecs.append(emb(tokenizer(t,return_tensors="pt").to(device).input_ids).mean(1).cpu().numpy().squeeze()); lab.append(l)
clus={l:"N/A" for l in labels}
if len(vecs)>=2: clus.update({l:f"C{c}" for l,c in zip(lab,KMeans(2,random_state=0,n_init=10).fit(np.vstack(vecs)).labels_)})
def block(seq,tag): return "\n\n---\n\n".join(f"**{tag}{i} [{clus.get(f'{tag}{i}','N/A')}]**:\n{t}" for i,t in enumerate(seq))
tbl=["|Iter|Ξ”S(I)|Ξ”S(Β¬I)|Ξ”S(I,Β¬I)|","|:--:|:---:|:----:|:------:|"]
tbl+=[f"|{i}|{('N/A' if dI[i] is None else f'{dI[i]:.4f}')}|"
f"{('N/A' if dnI[i] is None else f'{dnI[i]:.4f}')}|"
f"{('N/A' if dx[i] is None else f'{dx[i]:.4f}')}|" for i in range(iters)]
n=len(labels); mat=np.full((n,n),np.nan)
for a in range(n):
for b in range(a,n):
sim=1 if a==b else cosine((I+nI)[a],(I+nI)[b])
mat[a,b]=mat[b,a]=sim
return block(I,"I"),block(nI,"Β¬I"),"\n".join(tbl),"\n".join(dbg_log),heat(mat,labels,f"Similarity Matrix ({iters} iters β€’ {mdl})")
# ──────────────────────────────────────────────────────────────────────────────
# 5 Β· Gradio UI
# ──────────────────────────────────────────────────────────────────────────────
with gr.Blocks(theme=gr.themes.Soft(primary_hue="teal")) as demo:
gr.Markdown("## EAL Β· Emergent-Discourse Analyzer (Gemma 1 / 2 / 3 ready)")
mdl_dd=gr.Dropdown(list(AVAILABLE_MODELS.keys()),value="GPT-Neox-1.3B",label="Model")
iters=gr.Slider(1,7,3,1,label="Iterations")
run=gr.Button("Run πŸš€",variant="primary")
with gr.Tabs():
with gr.Tab("Traces"):
outI,outnI=gr.Markdown(),gr.Markdown()
with gr.Tab("Ξ”S + Heatmap"):
outTbl,outHm=gr.Markdown(),gr.HTML()
with gr.Tab("Debug (full prompts & answers)"):
outDbg=gr.Textbox(lines=26,interactive=False,show_copy_button=True)
run.click(run_eal,[iters,mdl_dd],[outI,outnI,outTbl,outDbg,outHm])
if __name__=="__main__":
demo.launch()