File size: 10,292 Bytes
fcc55bd
12da3d7
fcc55bd
 
 
 
12da3d7
1d1182e
bd61488
fcc55bd
 
 
 
 
 
 
12da3d7
 
 
 
 
fcc55bd
 
12da3d7
fcc55bd
12da3d7
fcc55bd
12da3d7
 
fcc55bd
 
 
 
12da3d7
fcc55bd
12da3d7
 
 
 
 
fcc55bd
 
 
12da3d7
 
fcc55bd
 
 
12da3d7
fcc55bd
12da3d7
fcc55bd
12da3d7
fcc55bd
12da3d7
fcc55bd
 
12da3d7
96b07ba
fcc55bd
12da3d7
fcc55bd
12da3d7
fcc55bd
 
 
12da3d7
 
fcc55bd
 
 
 
 
 
12da3d7
fcc55bd
12da3d7
fcc55bd
 
 
12da3d7
fcc55bd
12da3d7
 
 
 
 
 
 
 
 
 
 
 
fcc55bd
 
 
 
12da3d7
fcc55bd
12da3d7
fcc55bd
 
 
 
 
12da3d7
 
 
96b07ba
bd61488
fcc55bd
 
 
 
12da3d7
 
 
 
 
fcc55bd
12da3d7
 
 
 
fcc55bd
 
12da3d7
fcc55bd
12da3d7
 
 
 
fcc55bd
12da3d7
fcc55bd
 
96b07ba
12da3d7
 
 
 
 
 
 
 
 
 
 
fcc55bd
12da3d7
 
 
 
 
 
 
 
 
 
 
 
 
 
fcc55bd
12da3d7
 
 
fcc55bd
12da3d7
fcc55bd
 
12da3d7
fcc55bd
 
12da3d7
 
 
 
96b07ba
fcc55bd
12da3d7
fcc55bd
12da3d7
fcc55bd
12da3d7
 
1d1182e
12da3d7
fcc55bd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
###############################################################################
#  app.py  –  EAL Emergent-Discourse Analyzer  (Gemma 1 / 2 / 3 compliant)
###############################################################################
import gc, io, json, re, time, base64
import torch, numpy as np, matplotlib, matplotlib.pyplot as plt, seaborn as sns
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.cluster import KMeans

matplotlib.use("Agg")  # headless

# ──────────────────────────────────────────────────────────────────────────────
# 1 Β· Registry of models
# ──────────────────────────────────────────────────────────────────────────────
AVAILABLE_MODELS = {
    "GPT-Neox-1.3B"      : "EleutherAI/gpt-neo-1.3B",
    "GPT-2"              : "gpt2",
    "Gemma 1.1 2B-IT"    : "google/gemma-1.1-2b-it",
    "Gemma 2 2B-IT"      : "google/gemma-2-2b-it",
    "Gemma 3 1B-IT"      : "google/gemma-3-1b-it",
}

_loaded, _current = {}, None
dbg_log: list[str] = []

def dbg(msg: str) -> None:
    ts = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
    line = f"[{ts}] {msg}"
    dbg_log.append(line)
    print(line)

# ──────────────────────────────────────────────────────────────────────────────
# 2 Β· Loader helpers  (BF16-aware & VRAM-safe)
# ──────────────────────────────────────────────────────────────────────────────
def _gpu_supports_bf16() -> bool:
    if not torch.cuda.is_available(): return False
    major, _ = torch.cuda.get_device_capability()
    return major >= 8   # Ampere (8.0) or newer

def _unload_current():
    global _current
    if _current and _current in _loaded:
        _loaded[_current]["model"].to("cpu")
    torch.cuda.empty_cache(); gc.collect()
    _current = None

def _load(name: str):
    """Lazy load or swap in the requested model."""
    global tokenizer, model, MODEL_CTX, device, _current
    if name == _current: return
    dbg(f"[boot] switching β†’ {name}")
    _unload_current()

    if name in _loaded:                        # cached
        obj = _loaded[name]
        tokenizer, model, MODEL_CTX, device = obj["tok"], obj["model"], obj["ctx"], obj["dev"]
        _current = name; return

    repo = AVAILABLE_MODELS[name]
    torch_dtype = torch.bfloat16 if _gpu_supports_bf16() else torch.float16
    tok = AutoTokenizer.from_pretrained(repo, use_fast=True)
    mdl = AutoModelForCausalLM.from_pretrained(repo, torch_dtype=torch_dtype)
    dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    mdl.to(dev).eval()

    ctx_raw = getattr(mdl.config, "max_position_embeddings", 2048)
    ctx = int(min(ctx_raw, 8192))              # Gemma-3 reports 1e15 – clamp
    if tok.pad_token is None:
        tok.pad_token = tok.eos_token
        mdl.config.pad_token_id = mdl.config.eos_token_id

    _loaded[name] = {"tok": tok, "model": mdl, "ctx": ctx, "dev": dev}
    tokenizer, model, MODEL_CTX, device, _current = tok, mdl, ctx, dev, name
    dbg(f"[boot] {name} ready (ctx={ctx}, dev={dev}, dtype={torch_dtype})")

# prime default
_load("GPT-Neox-1.3B")

# ──────────────────────────────────────────────────────────────────────────────
# 3 Β· Utility fns  (unchanged)
# ──────────────────────────────────────────────────────────────────────────────
PROMPT_HEADROOM, MAX_GEN = 300, 100
_q = re.compile(r'"')
def esc(t): return _q.sub('\\"', t)

def trim(t, rv=80):
    toks = tokenizer.encode(t, add_special_tokens=False)
    keep = MODEL_CTX - PROMPT_HEADROOM - rv
    return tokenizer.decode(toks[-keep:], skip_special_tokens=True) if len(toks) > keep else t

def cosine(a, b):
    noisy = ("[Generation Error", "[Context window full]", "[Model not")
    if any(m in a for m in noisy) or any(m in b for m in noisy): return 0.0
    with torch.inference_mode():
        emb = model.get_input_embeddings()
        ta = emb(tokenizer(a, return_tensors="pt").to(device).input_ids).mean(1)
        tb = emb(tokenizer(b, return_tensors="pt").to(device).input_ids).mean(1)
    return max(min(float(cosine_similarity(ta.cpu(), tb.cpu())[0,0]),1),-1)

def generate(prompt, temp):
    dbg(f"PROMPT >>> {prompt}")
    with torch.inference_mode():
        inp = tokenizer(prompt, return_tensors="pt").to(device)
        out = model.generate(
            **inp,
            max_length=min(inp.input_ids.size(1)+MAX_GEN, MODEL_CTX),
            temperature=temp, top_p=0.9,
            repetition_penalty=1.2, no_repeat_ngram_size=3,
            pad_token_id=tokenizer.pad_token_id,
        )
    ans = tokenizer.decode(out[0][inp.input_ids.size(1):], skip_special_tokens=True).strip()
    dbg(f"OUTPUT <<< {ans}")
    return ans or "[Empty]"

def heat(mat, labels, title):
    mask=np.isnan(mat)
    fig, ax=plt.subplots(figsize=(max(8,len(labels)), max(7,len(labels)*0.9)))
    sns.heatmap(mat,mask=mask,annot=True,cmap="plasma",fmt=".2f",
                vmin=np.nanmin(mat)*0.97,vmax=1,annot_kws={"size":7},
                xticklabels=labels, yticklabels=labels, ax=ax)
    plt.xticks(rotation=45,ha="right"); plt.yticks(rotation=0)
    ax.set_title(title,pad=18); plt.tight_layout(pad=2.3)
    buf=io.BytesIO(); plt.savefig(buf,format="png"); plt.close(fig); buf.seek(0)
    return f"<img src='data:image/png;base64,{base64.b64encode(buf.read()).decode()}' style='max-width:95%;height:auto;'/>"

# ──────────────────────────────────────────────────────────────────────────────
# 4 Β· Main EAL routine  (unchanged logic)
# ──────────────────────────────────────────────────────────────────────────────
def run_eal(iters:int, mdl:str, prog=gr.Progress()):
    dbg_log.clear(); _load(mdl)
    I,nI,dI,dnI,dx=[None]*iters,[None]*iters,[None]*iters,[None]*iters,[None]*iters
    seed="A thinking process begins. The first thought is:"
    for k in range(iters):
        prm = seed if not k else (
            f'The thought process previously generated: "{esc(trim(I[k-1],60))}"\n\n'
            "Task: Continue this line of thought. What logically follows or develops?"
        )
        I[k]=generate(prm,0.7)
        prm_n=(f'Consider the statement: "{esc(trim(I[k],80))}"\n\n'
               "Task: Explore alternative perspectives or potential issues. "
               "What might be a contrasting viewpoint or an overlooked aspect?")
        nI[k]=generate(prm_n,0.9)
        if k: dI[k]=cosine(I[k-1],I[k]); dnI[k]=cosine(nI[k-1],nI[k])
        dx[k]=cosine(I[k],nI[k]); prog((k+1)/iters)

    # clusters
    labels=[f"I{k}" for k in range(iters)]+[f"Β¬I{k}" for k in range(iters)]
    vecs,lab=[],[]
    with torch.inference_mode():
        emb=model.get_input_embeddings()
        for t,l in zip(I+nI,labels):
            if t.startswith("["):continue
            vecs.append(emb(tokenizer(t,return_tensors="pt").to(device).input_ids).mean(1).cpu().numpy().squeeze()); lab.append(l)
    clus={l:"N/A" for l in labels}
    if len(vecs)>=2: clus.update({l:f"C{c}" for l,c in zip(lab,KMeans(2,random_state=0,n_init=10).fit(np.vstack(vecs)).labels_)})

    def block(seq,tag): return "\n\n---\n\n".join(f"**{tag}{i} [{clus.get(f'{tag}{i}','N/A')}]**:\n{t}" for i,t in enumerate(seq))
    tbl=["|Iter|Ξ”S(I)|Ξ”S(Β¬I)|Ξ”S(I,Β¬I)|","|:--:|:---:|:----:|:------:|"]
    tbl+=[f"|{i}|{('N/A' if dI[i] is None else f'{dI[i]:.4f}')}|"
          f"{('N/A' if dnI[i] is None else f'{dnI[i]:.4f}')}|"
          f"{('N/A' if dx[i]  is None else f'{dx[i]:.4f}')}|" for i in range(iters)]

    n=len(labels); mat=np.full((n,n),np.nan)
    for a in range(n):
        for b in range(a,n):
            sim=1 if a==b else cosine((I+nI)[a],(I+nI)[b])
            mat[a,b]=mat[b,a]=sim

    return block(I,"I"),block(nI,"Β¬I"),"\n".join(tbl),"\n".join(dbg_log),heat(mat,labels,f"Similarity Matrix ({iters} iters β€’ {mdl})")

# ──────────────────────────────────────────────────────────────────────────────
# 5 Β· Gradio UI
# ──────────────────────────────────────────────────────────────────────────────
with gr.Blocks(theme=gr.themes.Soft(primary_hue="teal")) as demo:
    gr.Markdown("## EAL Β· Emergent-Discourse Analyzer  (Gemma 1 / 2 / 3 ready)")
    mdl_dd=gr.Dropdown(list(AVAILABLE_MODELS.keys()),value="GPT-Neox-1.3B",label="Model")
    iters=gr.Slider(1,7,3,1,label="Iterations")
    run=gr.Button("Run πŸš€",variant="primary")
    with gr.Tabs():
        with gr.Tab("Traces"):
            outI,outnI=gr.Markdown(),gr.Markdown()
        with gr.Tab("Ξ”S + Heatmap"):
            outTbl,outHm=gr.Markdown(),gr.HTML()
        with gr.Tab("Debug (full prompts & answers)"):
            outDbg=gr.Textbox(lines=26,interactive=False,show_copy_button=True)
    run.click(run_eal,[iters,mdl_dd],[outI,outnI,outTbl,outDbg,outHm])

if __name__=="__main__":
    demo.launch()