Spaces:
Sleeping
Sleeping
Create apy.py
Browse files
apy.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
3 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
4 |
+
import numpy as np
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
# Load GPT-2 and tokenizer
|
8 |
+
model_name = "gpt2"
|
9 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
10 |
+
model = GPT2LMHeadModel.from_pretrained(model_name)
|
11 |
+
model.eval()
|
12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
model.to(device)
|
14 |
+
|
15 |
+
# Function to generate response
|
16 |
+
def generate_response(prompt, max_length=100):
|
17 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
18 |
+
outputs = model.generate(
|
19 |
+
**inputs,
|
20 |
+
max_length=len(inputs["input_ids"][0]) + max_length,
|
21 |
+
pad_token_id=tokenizer.eos_token_id,
|
22 |
+
do_sample=True,
|
23 |
+
temperature=0.9,
|
24 |
+
top_p=0.95,
|
25 |
+
)
|
26 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
|
27 |
+
|
28 |
+
# Semantic similarity via mean embeddings (ΔS approximation)
|
29 |
+
def similarity(a, b):
|
30 |
+
tok_a = tokenizer(a, return_tensors="pt").to(device)
|
31 |
+
tok_b = tokenizer(b, return_tensors="pt").to(device)
|
32 |
+
with torch.no_grad():
|
33 |
+
emb_a = model.transformer.wte(tok_a.input_ids).mean(dim=1)
|
34 |
+
emb_b = model.transformer.wte(tok_b.input_ids).mean(dim=1)
|
35 |
+
return float(cosine_similarity(emb_a.cpu().numpy(), emb_b.cpu().numpy())[0][0])
|
36 |
+
|
37 |
+
# Recursive identity loop (EAL-style unfolding)
|
38 |
+
def identity_unfolding(steps):
|
39 |
+
unfolding = []
|
40 |
+
ΔS_trace = []
|
41 |
+
|
42 |
+
current_text = "The following is a system thinking about itself:\n"
|
43 |
+
|
44 |
+
for step in range(steps):
|
45 |
+
response = generate_response(current_text)
|
46 |
+
unfolding.append(response)
|
47 |
+
|
48 |
+
if step > 0:
|
49 |
+
ΔS = similarity(unfolding[step - 1], unfolding[step])
|
50 |
+
ΔS_trace.append(round(ΔS, 4))
|
51 |
+
|
52 |
+
current_text = (
|
53 |
+
f'The system has previously stated:\n"{response}"\n'
|
54 |
+
"Now it continues thinking about what that implies:\n"
|
55 |
+
)
|
56 |
+
|
57 |
+
results = "\n\n---\n\n".join(
|
58 |
+
[f"Step {i}: {txt}" for i, txt in enumerate(unfolding)]
|
59 |
+
)
|
60 |
+
sim = "\n".join(
|
61 |
+
[f"ΔS({i} → {i+1}) = {val}" for i, val in enumerate(ΔS_trace)]
|
62 |
+
)
|
63 |
+
return results, sim
|
64 |
+
|
65 |
+
# Gradio Interface
|
66 |
+
iface = gr.Interface(
|
67 |
+
fn=identity_unfolding,
|
68 |
+
inputs=gr.Slider(2, 10, value=5, step=1, label="Number of Iterations"),
|
69 |
+
outputs=[
|
70 |
+
gr.Textbox(label="GPT-2 Identity Trace", lines=20),
|
71 |
+
gr.Textbox(label="Semantic ΔS Trace", lines=10),
|
72 |
+
],
|
73 |
+
title="EAL Identity Tester for GPT-2",
|
74 |
+
description=(
|
75 |
+
"This app recursively prompts GPT-2 to reflect on its own output. "
|
76 |
+
"It shows how close each iteration is to the previous one using a cosine-based ΔS metric. "
|
77 |
+
"Use this to test if GPT-2 stabilizes around a semantically coherent self-representation."
|
78 |
+
),
|
79 |
+
)
|
80 |
+
|
81 |
+
if __name__ == "__main__":
|
82 |
+
iface.launch()
|