neuralworm's picture
update app.py
96b07ba
raw
history blame
26.8 kB
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.cluster import KMeans
import numpy as np
import gradio as gr
import matplotlib
matplotlib.use('Agg') # Use a non-interactive backend for Matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
import io
import base64
import time
# --- Model and Tokenizer Setup ---
DEFAULT_MODEL_NAME = "EleutherAI/gpt-neo-1.3B"
FALLBACK_MODEL_NAME = "gpt2"
model_loaded_successfully = False
tokenizer = None
model = None
device = None
MODEL_CONTEXT_WINDOW = 1024
def load_model_and_tokenizer():
global tokenizer, model, device, MODEL_CONTEXT_WINDOW, model_loaded_successfully
# This function will run once when the script starts.
# Subsequent calls to the Gradio function will use these global variables.
if model_loaded_successfully: # Avoid reloading if already done
return
try:
print(f"Attempting to load model: {DEFAULT_MODEL_NAME}")
tokenizer = AutoTokenizer.from_pretrained(DEFAULT_MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(DEFAULT_MODEL_NAME)
print(f"Successfully loaded model: {DEFAULT_MODEL_NAME}")
except OSError as e:
print(f"Error loading model {DEFAULT_MODEL_NAME}. Error: {e}")
print(f"Falling back to {FALLBACK_MODEL_NAME}.")
try:
tokenizer = AutoTokenizer.from_pretrained(FALLBACK_MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(FALLBACK_MODEL_NAME)
print(f"Successfully loaded fallback model: {FALLBACK_MODEL_NAME}")
except OSError as e2:
print(f"FATAL: Could not load fallback model {FALLBACK_MODEL_NAME}. Error: {e2}")
# No gr.Error here as Gradio isn't running yet.
# The run_eal_dual_unfolding will check model_loaded_successfully.
return # Exit if fallback also fails
if model and tokenizer:
model.eval()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
print(f"Using device: {device}")
MODEL_CONTEXT_WINDOW = tokenizer.model_max_length if hasattr(tokenizer, 'model_max_length') and tokenizer.model_max_length is not None else getattr(model.config, 'max_position_embeddings', 1024)
print(f"Model context window: {MODEL_CONTEXT_WINDOW} tokens.")
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = model.config.eos_token_id # Ensure model config is also aware
print("Set tokenizer.pad_token and model.config.pad_token_id to eos_token.")
model_loaded_successfully = True
else:
print("Model or tokenizer failed to initialize.")
load_model_and_tokenizer() # Load on script start
# --- Configuration ---
# Reserve space for generation itself and system tokens.
# Max input to tokenizer.encode, not final prompt length.
PROMPT_TRIM_MAX_TOKENS = min(MODEL_CONTEXT_WINDOW - 300, 1700)
MAX_GEN_LENGTH = 100 # Keep generated segments relatively concise for iteration
# --- Debug Logging ---
debug_log_accumulator = []
def debug(msg):
timestamp = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
full_msg = f"[{timestamp}] {msg}"
print(full_msg)
debug_log_accumulator.append(full_msg)
# --- Core Functions ---
def trim_prompt_if_needed(prompt_text, max_tokens_for_trimming=PROMPT_TRIM_MAX_TOKENS):
if not model_loaded_successfully: return "[Model not loaded]"
# This trims the *content part* of the prompt before instructions are added
tokens = tokenizer.encode(prompt_text, add_special_tokens=False) # Encode only the content
if len(tokens) > max_tokens_for_trimming:
original_length = len(tokens)
# Trim from the beginning of the content to keep the most recent part
tokens = tokens[-max_tokens_for_trimming:]
trimmed_text = tokenizer.decode(tokens)
debug(f"[!] Content trimming: Original content {original_length} tokens, "
f"trimmed to {len(tokens)} for prompt construction.")
return trimmed_text
return prompt_text
def generate_text_response(constructed_prompt, generation_length=MAX_GEN_LENGTH):
if not model_loaded_successfully: return "[Model not loaded, cannot generate]"
# The constructed_prompt is the final string sent to the tokenizer
debug(f"Attempting to generate response for prompt (approx. {len(constructed_prompt.split())} words):\n'{constructed_prompt[:350].replace(chr(10), ' ')}...'")
inputs = tokenizer(constructed_prompt, return_tensors="pt", truncation=False).to(device) # Do not truncate here; max_length handles it
input_token_length = inputs.input_ids.size(1)
# The max_length for model.generate is the total length (prompt + new tokens)
max_length_for_generate = min(input_token_length + generation_length, MODEL_CONTEXT_WINDOW)
if max_length_for_generate <= input_token_length:
debug(f"[!!!] Warning: Prompt length ({input_token_length}) with desired generation length ({generation_length}) "
f"would exceed or meet model context window ({MODEL_CONTEXT_WINDOW}). Attempting to generate fewer tokens or failing. "
f"Prompt starts: '{constructed_prompt[:100].replace(chr(10), ' ')}...'")
# Try to generate at least a few tokens if there's any space at all
generation_length = max(0, MODEL_CONTEXT_WINDOW - input_token_length - 5) # Reserve 5 for safety
if generation_length <=0:
return "[Prompt filled context window; cannot generate new tokens]"
max_length_for_generate = input_token_length + generation_length
try:
outputs = model.generate(
input_ids=inputs.input_ids,
attention_mask=inputs.attention_mask,
max_length=max_length_for_generate,
pad_token_id=tokenizer.pad_token_id,
do_sample=True,
temperature=0.75, # Slightly more focused
top_p=0.9, # Keep some diversity
repetition_penalty=1.2, # Discourage direct repetition
no_repeat_ngram_size=3, # Avoid simple phrase repetitions
)
# Decode only the newly generated part
generated_tokens = outputs[0][input_token_length:]
result_text = tokenizer.decode(generated_tokens, skip_special_tokens=True).strip()
debug(f"Generated response text (length {len(result_text.split())} words, {len(generated_tokens)} tokens):\n'{result_text[:350].replace(chr(10), ' ')}...'")
return result_text if result_text else "[Empty Response]"
except Exception as e:
debug(f"[!!!] Error during text generation: {e}\nFinal prompt sent was (approx {input_token_length} tokens): {constructed_prompt[:200].replace(chr(10), ' ')}...")
return f"[Generation Error: {str(e)[:100]}]"
def calculate_similarity(text_a, text_b):
if not model_loaded_successfully: return 0.0
problematic_markers = ["[Empty Response]", "[Generation Error]", "[Prompt too long", "[Model not loaded"]
# Check if texts are valid strings before stripping
text_a_is_valid = text_a and isinstance(text_a, str) and text_a.strip() and not any(marker in text_a for marker in problematic_markers)
text_b_is_valid = text_b and isinstance(text_b, str) and text_b.strip() and not any(marker in text_b for marker in problematic_markers)
if not text_a_is_valid or not text_b_is_valid:
debug(f"Similarity calculation skipped for invalid/empty texts: A_valid={text_a_is_valid}, B_valid={text_b_is_valid} (A='{str(text_a)[:30]}...', B='{str(text_b)[:30]}...')")
return 0.0
embedding_layer = model.get_input_embeddings()
with torch.no_grad():
tokens_a = tokenizer(text_a, return_tensors="pt", truncation=True, max_length=MODEL_CONTEXT_WINDOW).to(device)
tokens_b = tokenizer(text_b, return_tensors="pt", truncation=True, max_length=MODEL_CONTEXT_WINDOW).to(device)
if tokens_a.input_ids.size(1) == 0 or tokens_b.input_ids.size(1) == 0:
debug(f"Similarity calculation skipped: tokenization resulted in empty input_ids. A='{str(text_a)[:30]}...', B='{str(text_b)[:30]}...'")
return 0.0
emb_a = embedding_layer(tokens_a.input_ids).mean(dim=1)
emb_b = embedding_layer(tokens_b.input_ids).mean(dim=1)
score = float(cosine_similarity(emb_a.cpu().numpy(), emb_b.cpu().numpy())[0][0])
debug(f"Similarity A vs B: {score:.4f} (A='{str(text_a)[:30].replace(chr(10), ' ')}...', B='{str(text_b)[:30].replace(chr(10), ' ')}...')")
return score
def generate_similarity_heatmap(texts_list, custom_labels, title="Semantic Similarity Heatmap"):
if not model_loaded_successfully: return "Heatmap generation skipped: Model not loaded."
valid_items = [(text, label) for text, label in zip(texts_list, custom_labels)
if text and isinstance(text, str) and text.strip() and not any(m in text for m in ["[Empty", "[Generation Error", "[Prompt too long"])]
if len(valid_items) < 2:
debug("Not enough valid texts to generate a heatmap.")
return "Not enough valid data for heatmap."
valid_texts = [item[0] for item in valid_items]
valid_labels = [item[1] for item in valid_items]
num_valid_texts = len(valid_texts)
sim_matrix = np.full((num_valid_texts, num_valid_texts), np.nan)
min_sim_val = 1.0 # To find actual min for better color scaling
max_sim_val = 0.0 # To find actual max
for i in range(num_valid_texts):
for j in range(num_valid_texts):
if i == j:
sim_matrix[i, j] = 1.0
elif np.isnan(sim_matrix[j, i]):
sim = calculate_similarity(valid_texts[i], valid_texts[j])
sim_matrix[i, j] = sim
sim_matrix[j, i] = sim
if sim < min_sim_val: min_sim_val = sim
if sim > max_sim_val: max_sim_val = sim
else:
sim_matrix[i,j] = sim_matrix[j,i]
# Adjust vmin for heatmap to show more contrast if all values are high
heatmap_vmin = min(0.9, min_sim_val - 0.01) if min_sim_val > 0.8 else 0.7 # Ensure some range, default to 0.7 if values are lower
heatmap_vmax = 1.0
try:
fig_width = max(8, num_valid_texts * 1.0) # Increased size
fig_height = max(7, num_valid_texts * 0.9)
fig, ax = plt.subplots(figsize=(fig_width, fig_height))
mask = np.isnan(sim_matrix)
sns.heatmap(sim_matrix, annot=True, cmap="plasma", fmt=".2f", ax=ax,
xticklabels=valid_labels, yticklabels=valid_labels, annot_kws={"size": 7}, mask=mask, vmin=heatmap_vmin, vmax=heatmap_vmax)
ax.set_title(title, fontsize=14, pad=20)
plt.xticks(rotation=45, ha="right", fontsize=9)
plt.yticks(rotation=0, fontsize=9)
plt.tight_layout(pad=2.5)
buf = io.BytesIO()
plt.savefig(buf, format='png')
plt.close(fig)
buf.seek(0)
img_base64 = base64.b64encode(buf.read()).decode('utf-8')
return f"<img src='data:image/png;base64,{img_base64}' alt='{title}' style='max-width:95%; height:auto; border: 1px solid #ccc; margin: 10px auto; display:block; box-shadow: 0 0 10px rgba(0,0,0,0.1);'/>"
except Exception as e:
debug(f"[!!!] Error generating heatmap: {e}")
return f"Error generating heatmap: {str(e)[:200]}"
def perform_text_clustering(texts_list, custom_labels, num_clusters=2):
if not model_loaded_successfully: return {label: "N/A (Model)" for label in custom_labels}
valid_items = [(text, label) for text, label in zip(texts_list, custom_labels)
if text and isinstance(text, str) and text.strip() and not any(m in text for m in ["[Empty", "[Generation Error", "[Prompt too long"])]
if len(valid_items) < num_clusters:
debug(f"Not enough valid texts ({len(valid_items)}) for {num_clusters}-means clustering.")
return {item[1]: f"N/A (Samples<{num_clusters})" for item in valid_items} | {label: "N/A" for label in custom_labels if label not in [item[1] for item in valid_items]}
valid_texts = [item[0] for item in valid_items]
valid_original_labels = [item[1] for item in valid_items]
embedding_layer = model.get_input_embeddings()
embeddings_for_clustering = []
with torch.no_grad():
for text_item in valid_texts:
# Important: Ensure input_ids are not empty for embedding layer
tokens = tokenizer(text_item, return_tensors="pt", truncation=True, max_length=MODEL_CONTEXT_WINDOW, padding=True).to(device) # Added padding
if tokens.input_ids.size(1) == 0:
debug(f"Skipping text for embedding in clustering due to empty tokenization: '{text_item[:30]}...'")
continue
emb = embedding_layer(tokens.input_ids).mean(dim=1)
embeddings_for_clustering.append(emb.cpu().numpy().squeeze())
if not embeddings_for_clustering or len(embeddings_for_clustering) < num_clusters:
debug(f"Not enough valid texts were successfully embedded for clustering ({len(embeddings_for_clustering)} found).")
return {label: "N/A (Embed Fail)" for label in custom_labels}
embeddings_np = np.array(embeddings_for_clustering)
# Ensure embeddings are 2D for KMeans
if embeddings_np.ndim == 1:
if len(embeddings_for_clustering) == 1: # Only one sample
embeddings_np = embeddings_np.reshape(1, -1)
else: # Should not happen if num_clusters > 1 and len(embeddings_for_clustering) >= num_clusters
debug("Embedding array is 1D but multiple samples exist. This is unexpected.")
return {label: "N/A (Embed Dim Error)" for label in custom_labels}
cluster_results_map = {label: "N/A" for label in custom_labels}
try:
actual_num_clusters = min(num_clusters, len(embeddings_for_clustering))
if actual_num_clusters < 2:
debug(f"Clustering: Adjusted num_clusters to 1 (or less than 2) due to only {len(embeddings_for_clustering)} valid sample(s). Assigning all to Cluster 0.")
predicted_labels = [0] * len(embeddings_for_clustering)
else:
kmeans = KMeans(n_clusters=actual_num_clusters, random_state=42, n_init=10) # Explicit n_init
predicted_labels = kmeans.fit_predict(embeddings_np)
for i, original_label in enumerate(valid_original_labels):
cluster_results_map[original_label] = f"C{predicted_labels[i]}"
return cluster_results_map
except Exception as e:
debug(f"[!!!] Error during clustering: {e}")
return {label: f"N/A (Clustering Error)" for label in custom_labels}
# --- Main EAL Unfolding Logic ---
def run_eal_dual_unfolding(num_iterations, progress=gr.Progress(track_tqdm=True)):
if not model_loaded_successfully:
error_msg = "CRITICAL: Model not loaded. Please check server logs and restart the Space if necessary."
debug(error_msg)
gr.Warning(error_msg)
return error_msg, error_msg, error_msg, error_msg, "<p style='color:red; text-align:center; font-weight:bold;'>Model not loaded. Cannot run analysis.</p>"
I_trace_texts, not_I_trace_texts = [None]*num_iterations, [None]*num_iterations
delta_S_I_values, delta_S_not_I_values, delta_S_cross_values = [None]*num_iterations, [None]*num_iterations, [None]*num_iterations
debug_log_accumulator.clear()
debug("EAL Dual Unfolding Process Started.")
# Truly open-ended initial prompt for the system to define itself
# The LLM completes this to generate I0.
initial_seed_prompt_for_I = "A thinking process begins. The first thought is:"
progress(0, desc="Starting EAL Iterations...")
for i in range(num_iterations):
iteration_log_header = f"\n\n{'='*15} Iteration {i} {'='*15}"
debug(iteration_log_header)
progress(i / num_iterations, desc=f"Iteration {i+1}/{num_iterations} - I-Trace")
# === I-Trace (Self-Coherence/Development) ===
if i == 0:
prompt_for_I_trace = initial_seed_prompt_for_I
else:
# Basis is the *actual text* of the previous I-trace output
basis_for_I_elaboration = I_trace_texts[i-1]
if not basis_for_I_elaboration or any(m in basis_for_I_elaboration for m in ["[Empty", "[Generation Error", "[Prompt too long"]):
basis_for_I_elaboration = "The previous thought was not clearly formed. Let's try a new line of thought:"
debug(f"[!] Using fallback basis for I-Trace at iter {i}.")
# Trim the basis content if it's too long before adding instructions
trimmed_basis_I = trim_prompt_if_needed(basis_for_I_elaboration, PROMPT_TRIM_MAX_TOKENS - 50) # Reserve 50 tokens for instruction
prompt_for_I_trace = f"The thought process previously generated: \"{trimmed_basis_I}\"\n\nTask: Continue this line of thought. What logically follows or develops from this statement?"
generated_I_text = generate_text_response(prompt_for_I_trace)
I_trace_texts[i] = generated_I_text
progress((i + 0.5) / num_iterations, desc=f"Iteration {i+1}/{num_iterations} - ¬I-Trace (Alternative Perspective)")
# === ¬I-Trace (Alternative Perspectives / Potential Antithesis) ===
# ¬I always reacts to the *current* I-trace output for this iteration
statement_to_consider_for_not_I = I_trace_texts[i]
if not statement_to_consider_for_not_I or any(m in statement_to_consider_for_not_I for m in ["[Empty", "[Generation Error", "[Prompt too long"]):
statement_to_consider_for_not_I = "The primary thought was not clearly formed. Consider a general alternative to how systems might evolve."
debug(f"[!] Using fallback statement for ¬I-Trace at iter {i}.")
# Trim the statement to consider if it's too long before adding instructions
trimmed_basis_not_I = trim_prompt_if_needed(statement_to_consider_for_not_I, PROMPT_TRIM_MAX_TOKENS - 70) # Reserve 70 for instruction
prompt_for_not_I_trace = f"Consider the statement: \"{trimmed_basis_not_I}\"\n\nTask: Explore alternative perspectives or potential issues related to this statement. What might be a contrasting viewpoint or an overlooked aspect?"
generated_not_I_text = generate_text_response(prompt_for_not_I_trace)
not_I_trace_texts[i] = generated_not_I_text
# === ΔS (Similarity) Calculations ===
debug(f"--- Calculating Similarities for Iteration {i} ---")
if i > 0:
delta_S_I_values[i] = calculate_similarity(I_trace_texts[i-1], I_trace_texts[i])
delta_S_not_I_values[i] = calculate_similarity(not_I_trace_texts[i-1], not_I_trace_texts[i])
# For i=0, these intra-trace deltas remain None
delta_S_cross_values[i] = calculate_similarity(I_trace_texts[i], not_I_trace_texts[i])
debug(f"--- End of Similarity Calculations for Iteration {i} ---")
progress(1, desc="Generating Analysis and Visualizations...")
debug("\n\n=== Post-loop Analysis ===")
# --- Post-loop Analysis & Output Formatting ---
all_generated_texts = I_trace_texts + not_I_trace_texts
text_labels_for_analysis = [f"I{k}" for k in range(num_iterations)] + \
[f"¬I{k}" for k in range(num_iterations)]
cluster_assignments_map = perform_text_clustering(all_generated_texts, text_labels_for_analysis, num_clusters=2)
debug(f"Clustering results: {cluster_assignments_map}")
I_out_formatted_lines = []
for k in range(num_iterations):
cluster_label_I = cluster_assignments_map.get(f"I{k}", "N/A")
I_out_formatted_lines.append(f"**I{k} [{cluster_label_I}]**:\n{I_trace_texts[k]}")
I_out_formatted = "\n\n---\n\n".join(I_out_formatted_lines)
not_I_out_formatted_lines = []
for k in range(num_iterations):
cluster_label_not_I = cluster_assignments_map.get(f"¬I{k}", "N/A")
not_I_out_formatted_lines.append(f"**¬I{k} [{cluster_label_not_I}]**:\n{not_I_trace_texts[k]}")
not_I_out_formatted = "\n\n---\n\n".join(not_I_out_formatted_lines)
delta_S_summary_lines = ["| Iter | ΔS(I_prev↔I_curr) | ΔS(¬I_prev↔¬I_curr) | ΔS_Cross(I_curr↔¬I_curr) |",
"|:----:|:-----------------:|:-------------------:|:-------------------------:|"]
for k in range(num_iterations):
ds_i_str = f"{delta_S_I_values[k]:.4f}" if delta_S_I_values[k] is not None else "N/A (Iter 0)"
ds_not_i_str = f"{delta_S_not_I_values[k]:.4f}" if delta_S_not_I_values[k] is not None else "N/A (Iter 0)"
ds_cross_str = f"{delta_S_cross_values[k]:.4f}" if delta_S_cross_values[k] is not None else "N/A"
delta_S_summary_lines.append(f"| {k:^2} | {ds_i_str:^15} | {ds_not_i_str:^17} | {ds_cross_str:^23} |")
delta_S_summary_output = "\n".join(delta_S_summary_lines)
debug_log_output = "\n".join(debug_log_accumulator)
heatmap_html_output = generate_similarity_heatmap(all_generated_texts,
custom_labels=text_labels_for_analysis,
title=f"Similarity Matrix (All Texts - {num_iterations} Iterations)")
debug("EAL Dual Unfolding Process Completed.")
return I_out_formatted, not_I_out_formatted, delta_S_summary_output, debug_log_output, heatmap_html_output
# --- Gradio Interface Definition ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="teal", secondary_hue="cyan", neutral_hue="slate")) as eal_interface:
gr.Markdown("## EAL LLM Emergent Discourse Analyzer")
gr.Markdown(
"This application explores how a Large Language Model (LLM) develops textual traces when prompted iteratively. It runs two parallel traces:\n"
"1. **I-Trace (Coherent Elaboration):** Starting with a neutral seed completed by the LLM, each subsequent step asks the LLM to develop its *own previous statement* from this trace.\n"
"2. **¬I-Trace (Alternative Perspectives):** In parallel, this trace asks the LLM to explore alternative perspectives or issues related to the *current statement generated in the I-Trace*.\n\n"
"The goal is to observe if stable, coherent, and potentially distinct semantic trajectories emerge, inspired by Entropic Attractor Logic (EAL) concepts of stability and divergence."
)
with gr.Row():
iterations_slider = gr.Slider(minimum=1, maximum=7, value=3, step=1, # Max 7 for performance
label="Number of Iterations",
info="Higher numbers significantly increase processing time.")
run_button = gr.Button("🚀 Analyze Emergent Traces", variant="primary", scale=0)
with gr.Accordion("ℹ️ Interpreting Outputs", open=False):
gr.Markdown(
"- **I-Trace & ¬I-Trace Texts:** Observe the content. Does the I-Trace show coherent development? Does the ¬I-Trace offer genuinely different angles or does it just paraphrase/agree with the I-Trace statement it's commenting on?\n"
"- **ΔS Values (Cosine Similarity):**\n"
" - `ΔS(I_prev↔I_curr)`: Similarity between I<sub>k-1</sub> and I<sub>k</sub>. High values (near 1.0) mean the I-Trace is very similar to its previous step (stable, possibly repetitive).\n"
" - `ΔS(¬I_prev↔¬I_curr)`: Similarity between ¬I<sub>k-1</sub> and ¬I<sub>k</sub>. High values mean the ¬I-Trace is also internally consistent.\n"
" - `ΔS_Cross(I_curr↔¬I_curr)`: Similarity between I<sub>k</sub> and ¬I<sub>k</sub> (at the same iteration). **Low values are interesting here**, as they suggest the ¬I-Trace is semantically distinct from the I-Trace. High values suggest the model struggles to create a true alternative.\n"
"- **Clustering [Cx]:** Texts are assigned to one of two clusters (C0 or C1). Ideally, I-Trace texts would fall into one cluster and ¬I-Trace texts into another if they are semantically distinct.\n"
"- **Heatmap:** Visualizes all pair-wise similarities. Look for blocks: high similarity within I-texts, high within ¬I-texts, and (ideally) lower between I and ¬I blocks."
)
with gr.Tabs():
with gr.TabItem("📜 Text Traces (I and ¬I)"):
with gr.Row(equal_height=False): # Allow different heights
with gr.Column(scale=1):
i_trace_output = gr.Markdown(label="I-Trace (Coherent Elaboration with Cluster)", elem_id="i-trace-box")
with gr.Column(scale=1):
not_i_trace_output = gr.Markdown(label="¬I-Trace (Alternative Perspectives with Cluster)", elem_id="not-i-trace-box")
with gr.TabItem("📊 ΔS Similarity & Heatmap"):
delta_s_output = gr.Markdown(label="ΔS Similarity Trace Summary (Table)", elem_id="delta-s-box")
heatmap_output = gr.HTML(label="Overall Semantic Similarity Heatmap")
gr.Markdown("*Heatmap values closer to 1.0 (brighter yellow in 'plasma' map) indicate higher similarity. The color scale is adjusted based on the min/max observed similarities to highlight variations.*")
with gr.TabItem("⚙️ Debug Log"):
debug_log_output_box = gr.Textbox(label="Detailed Debug Log (Prompts, Responses, Errors, Similarities)", lines=25, interactive=False, show_copy_button=True, max_lines=200)
run_button.click(
fn=run_eal_dual_unfolding,
inputs=iterations_slider,
outputs=[i_trace_output, not_i_trace_output, delta_s_output, debug_log_output_box, heatmap_output],
api_name="run_eal_analysis"
)
gr.Markdown("--- \n*EAL LLM Emergent Discourse Analyzer v0.4 - User & ℧ Collaboration*")
if __name__ == "__main__":
if not model_loaded_successfully:
print("CRITICAL ERROR: Model failed to load. Gradio app will likely not function correctly.")
# Fallback to a minimal Gradio app displaying an error
with gr.Blocks() as error_interface:
gr.Markdown("# Application Error")
gr.Markdown("## CRITICAL: Language Model Failed to Load!")
gr.Markdown("The application cannot start because the required language model (either EleutherAI/gpt-neo-1.3B or the fallback gpt2) could not be loaded. Please check the server console logs for specific error messages from the `transformers` library. This might be due to network issues, incorrect model name, or insufficient resources.")
error_interface.launch()
else:
print("Starting Gradio App...")
eal_interface.launch()