Spaces:
Sleeping
Sleeping
File size: 26,778 Bytes
1d1182e b2cf072 1d1182e bd61488 1d1182e 6a869ae b2cf072 bd61488 96b07ba bd61488 6a869ae 96b07ba 6a869ae 96b07ba 6a869ae 96b07ba 6a869ae 1d0a230 96b07ba 6a869ae 96b07ba 6a869ae b2cf072 96b07ba b2cf072 96b07ba bd61488 b2cf072 96b07ba 6a869ae 96b07ba 6a869ae 96b07ba b2cf072 6a869ae 96b07ba 6a869ae b2cf072 96b07ba 6a869ae bd61488 b2cf072 6a869ae 96b07ba bd61488 96b07ba bd61488 96b07ba 6a869ae 96b07ba 6a869ae bd61488 96b07ba bd61488 6a869ae 96b07ba bd61488 6a869ae 1d1182e 6a869ae 96b07ba 6a869ae 96b07ba 6a869ae 96b07ba b2cf072 96b07ba b2cf072 6a869ae 96b07ba b2cf072 6a869ae 96b07ba b2cf072 6a869ae 96b07ba b2cf072 6a869ae b2cf072 96b07ba b2cf072 6a869ae 96b07ba 6a869ae 96b07ba 6a869ae 96b07ba 6a869ae 96b07ba 6a869ae 96b07ba 6a869ae 96b07ba 6a869ae 96b07ba 6a869ae 96b07ba b2cf072 96b07ba b2cf072 96b07ba 6a869ae b2cf072 6a869ae bd61488 b2cf072 96b07ba 6a869ae 96b07ba 6a869ae b2cf072 6a869ae b2cf072 96b07ba 6a869ae b2cf072 96b07ba b2cf072 6a869ae b2cf072 96b07ba b2cf072 58d7c9e 96b07ba 6a869ae 96b07ba b2cf072 6a869ae 96b07ba 6a869ae 96b07ba b2cf072 6a869ae 96b07ba 6a869ae 96b07ba 6a869ae 96b07ba 6a869ae 96b07ba 6a869ae 96b07ba 6a869ae b2cf072 6a869ae 96b07ba 6a869ae 96b07ba b2cf072 6a869ae b2cf072 6a869ae 96b07ba 6a869ae b2cf072 96b07ba b2cf072 96b07ba 6a869ae 96b07ba 6a869ae 96b07ba 1d1182e 6a869ae b2cf072 96b07ba 1d1182e 6a869ae b2cf072 96b07ba 1189ea8 96b07ba 6a869ae b2cf072 96b07ba 6a869ae 1189ea8 6a869ae bd61488 6a869ae 96b07ba 6a869ae 1189ea8 6a869ae 96b07ba 1d1182e 96b07ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 |
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.cluster import KMeans
import numpy as np
import gradio as gr
import matplotlib
matplotlib.use('Agg') # Use a non-interactive backend for Matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
import io
import base64
import time
# --- Model and Tokenizer Setup ---
DEFAULT_MODEL_NAME = "EleutherAI/gpt-neo-1.3B"
FALLBACK_MODEL_NAME = "gpt2"
model_loaded_successfully = False
tokenizer = None
model = None
device = None
MODEL_CONTEXT_WINDOW = 1024
def load_model_and_tokenizer():
global tokenizer, model, device, MODEL_CONTEXT_WINDOW, model_loaded_successfully
# This function will run once when the script starts.
# Subsequent calls to the Gradio function will use these global variables.
if model_loaded_successfully: # Avoid reloading if already done
return
try:
print(f"Attempting to load model: {DEFAULT_MODEL_NAME}")
tokenizer = AutoTokenizer.from_pretrained(DEFAULT_MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(DEFAULT_MODEL_NAME)
print(f"Successfully loaded model: {DEFAULT_MODEL_NAME}")
except OSError as e:
print(f"Error loading model {DEFAULT_MODEL_NAME}. Error: {e}")
print(f"Falling back to {FALLBACK_MODEL_NAME}.")
try:
tokenizer = AutoTokenizer.from_pretrained(FALLBACK_MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(FALLBACK_MODEL_NAME)
print(f"Successfully loaded fallback model: {FALLBACK_MODEL_NAME}")
except OSError as e2:
print(f"FATAL: Could not load fallback model {FALLBACK_MODEL_NAME}. Error: {e2}")
# No gr.Error here as Gradio isn't running yet.
# The run_eal_dual_unfolding will check model_loaded_successfully.
return # Exit if fallback also fails
if model and tokenizer:
model.eval()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
print(f"Using device: {device}")
MODEL_CONTEXT_WINDOW = tokenizer.model_max_length if hasattr(tokenizer, 'model_max_length') and tokenizer.model_max_length is not None else getattr(model.config, 'max_position_embeddings', 1024)
print(f"Model context window: {MODEL_CONTEXT_WINDOW} tokens.")
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = model.config.eos_token_id # Ensure model config is also aware
print("Set tokenizer.pad_token and model.config.pad_token_id to eos_token.")
model_loaded_successfully = True
else:
print("Model or tokenizer failed to initialize.")
load_model_and_tokenizer() # Load on script start
# --- Configuration ---
# Reserve space for generation itself and system tokens.
# Max input to tokenizer.encode, not final prompt length.
PROMPT_TRIM_MAX_TOKENS = min(MODEL_CONTEXT_WINDOW - 300, 1700)
MAX_GEN_LENGTH = 100 # Keep generated segments relatively concise for iteration
# --- Debug Logging ---
debug_log_accumulator = []
def debug(msg):
timestamp = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
full_msg = f"[{timestamp}] {msg}"
print(full_msg)
debug_log_accumulator.append(full_msg)
# --- Core Functions ---
def trim_prompt_if_needed(prompt_text, max_tokens_for_trimming=PROMPT_TRIM_MAX_TOKENS):
if not model_loaded_successfully: return "[Model not loaded]"
# This trims the *content part* of the prompt before instructions are added
tokens = tokenizer.encode(prompt_text, add_special_tokens=False) # Encode only the content
if len(tokens) > max_tokens_for_trimming:
original_length = len(tokens)
# Trim from the beginning of the content to keep the most recent part
tokens = tokens[-max_tokens_for_trimming:]
trimmed_text = tokenizer.decode(tokens)
debug(f"[!] Content trimming: Original content {original_length} tokens, "
f"trimmed to {len(tokens)} for prompt construction.")
return trimmed_text
return prompt_text
def generate_text_response(constructed_prompt, generation_length=MAX_GEN_LENGTH):
if not model_loaded_successfully: return "[Model not loaded, cannot generate]"
# The constructed_prompt is the final string sent to the tokenizer
debug(f"Attempting to generate response for prompt (approx. {len(constructed_prompt.split())} words):\n'{constructed_prompt[:350].replace(chr(10), ' ')}...'")
inputs = tokenizer(constructed_prompt, return_tensors="pt", truncation=False).to(device) # Do not truncate here; max_length handles it
input_token_length = inputs.input_ids.size(1)
# The max_length for model.generate is the total length (prompt + new tokens)
max_length_for_generate = min(input_token_length + generation_length, MODEL_CONTEXT_WINDOW)
if max_length_for_generate <= input_token_length:
debug(f"[!!!] Warning: Prompt length ({input_token_length}) with desired generation length ({generation_length}) "
f"would exceed or meet model context window ({MODEL_CONTEXT_WINDOW}). Attempting to generate fewer tokens or failing. "
f"Prompt starts: '{constructed_prompt[:100].replace(chr(10), ' ')}...'")
# Try to generate at least a few tokens if there's any space at all
generation_length = max(0, MODEL_CONTEXT_WINDOW - input_token_length - 5) # Reserve 5 for safety
if generation_length <=0:
return "[Prompt filled context window; cannot generate new tokens]"
max_length_for_generate = input_token_length + generation_length
try:
outputs = model.generate(
input_ids=inputs.input_ids,
attention_mask=inputs.attention_mask,
max_length=max_length_for_generate,
pad_token_id=tokenizer.pad_token_id,
do_sample=True,
temperature=0.75, # Slightly more focused
top_p=0.9, # Keep some diversity
repetition_penalty=1.2, # Discourage direct repetition
no_repeat_ngram_size=3, # Avoid simple phrase repetitions
)
# Decode only the newly generated part
generated_tokens = outputs[0][input_token_length:]
result_text = tokenizer.decode(generated_tokens, skip_special_tokens=True).strip()
debug(f"Generated response text (length {len(result_text.split())} words, {len(generated_tokens)} tokens):\n'{result_text[:350].replace(chr(10), ' ')}...'")
return result_text if result_text else "[Empty Response]"
except Exception as e:
debug(f"[!!!] Error during text generation: {e}\nFinal prompt sent was (approx {input_token_length} tokens): {constructed_prompt[:200].replace(chr(10), ' ')}...")
return f"[Generation Error: {str(e)[:100]}]"
def calculate_similarity(text_a, text_b):
if not model_loaded_successfully: return 0.0
problematic_markers = ["[Empty Response]", "[Generation Error]", "[Prompt too long", "[Model not loaded"]
# Check if texts are valid strings before stripping
text_a_is_valid = text_a and isinstance(text_a, str) and text_a.strip() and not any(marker in text_a for marker in problematic_markers)
text_b_is_valid = text_b and isinstance(text_b, str) and text_b.strip() and not any(marker in text_b for marker in problematic_markers)
if not text_a_is_valid or not text_b_is_valid:
debug(f"Similarity calculation skipped for invalid/empty texts: A_valid={text_a_is_valid}, B_valid={text_b_is_valid} (A='{str(text_a)[:30]}...', B='{str(text_b)[:30]}...')")
return 0.0
embedding_layer = model.get_input_embeddings()
with torch.no_grad():
tokens_a = tokenizer(text_a, return_tensors="pt", truncation=True, max_length=MODEL_CONTEXT_WINDOW).to(device)
tokens_b = tokenizer(text_b, return_tensors="pt", truncation=True, max_length=MODEL_CONTEXT_WINDOW).to(device)
if tokens_a.input_ids.size(1) == 0 or tokens_b.input_ids.size(1) == 0:
debug(f"Similarity calculation skipped: tokenization resulted in empty input_ids. A='{str(text_a)[:30]}...', B='{str(text_b)[:30]}...'")
return 0.0
emb_a = embedding_layer(tokens_a.input_ids).mean(dim=1)
emb_b = embedding_layer(tokens_b.input_ids).mean(dim=1)
score = float(cosine_similarity(emb_a.cpu().numpy(), emb_b.cpu().numpy())[0][0])
debug(f"Similarity A vs B: {score:.4f} (A='{str(text_a)[:30].replace(chr(10), ' ')}...', B='{str(text_b)[:30].replace(chr(10), ' ')}...')")
return score
def generate_similarity_heatmap(texts_list, custom_labels, title="Semantic Similarity Heatmap"):
if not model_loaded_successfully: return "Heatmap generation skipped: Model not loaded."
valid_items = [(text, label) for text, label in zip(texts_list, custom_labels)
if text and isinstance(text, str) and text.strip() and not any(m in text for m in ["[Empty", "[Generation Error", "[Prompt too long"])]
if len(valid_items) < 2:
debug("Not enough valid texts to generate a heatmap.")
return "Not enough valid data for heatmap."
valid_texts = [item[0] for item in valid_items]
valid_labels = [item[1] for item in valid_items]
num_valid_texts = len(valid_texts)
sim_matrix = np.full((num_valid_texts, num_valid_texts), np.nan)
min_sim_val = 1.0 # To find actual min for better color scaling
max_sim_val = 0.0 # To find actual max
for i in range(num_valid_texts):
for j in range(num_valid_texts):
if i == j:
sim_matrix[i, j] = 1.0
elif np.isnan(sim_matrix[j, i]):
sim = calculate_similarity(valid_texts[i], valid_texts[j])
sim_matrix[i, j] = sim
sim_matrix[j, i] = sim
if sim < min_sim_val: min_sim_val = sim
if sim > max_sim_val: max_sim_val = sim
else:
sim_matrix[i,j] = sim_matrix[j,i]
# Adjust vmin for heatmap to show more contrast if all values are high
heatmap_vmin = min(0.9, min_sim_val - 0.01) if min_sim_val > 0.8 else 0.7 # Ensure some range, default to 0.7 if values are lower
heatmap_vmax = 1.0
try:
fig_width = max(8, num_valid_texts * 1.0) # Increased size
fig_height = max(7, num_valid_texts * 0.9)
fig, ax = plt.subplots(figsize=(fig_width, fig_height))
mask = np.isnan(sim_matrix)
sns.heatmap(sim_matrix, annot=True, cmap="plasma", fmt=".2f", ax=ax,
xticklabels=valid_labels, yticklabels=valid_labels, annot_kws={"size": 7}, mask=mask, vmin=heatmap_vmin, vmax=heatmap_vmax)
ax.set_title(title, fontsize=14, pad=20)
plt.xticks(rotation=45, ha="right", fontsize=9)
plt.yticks(rotation=0, fontsize=9)
plt.tight_layout(pad=2.5)
buf = io.BytesIO()
plt.savefig(buf, format='png')
plt.close(fig)
buf.seek(0)
img_base64 = base64.b64encode(buf.read()).decode('utf-8')
return f"<img src='data:image/png;base64,{img_base64}' alt='{title}' style='max-width:95%; height:auto; border: 1px solid #ccc; margin: 10px auto; display:block; box-shadow: 0 0 10px rgba(0,0,0,0.1);'/>"
except Exception as e:
debug(f"[!!!] Error generating heatmap: {e}")
return f"Error generating heatmap: {str(e)[:200]}"
def perform_text_clustering(texts_list, custom_labels, num_clusters=2):
if not model_loaded_successfully: return {label: "N/A (Model)" for label in custom_labels}
valid_items = [(text, label) for text, label in zip(texts_list, custom_labels)
if text and isinstance(text, str) and text.strip() and not any(m in text for m in ["[Empty", "[Generation Error", "[Prompt too long"])]
if len(valid_items) < num_clusters:
debug(f"Not enough valid texts ({len(valid_items)}) for {num_clusters}-means clustering.")
return {item[1]: f"N/A (Samples<{num_clusters})" for item in valid_items} | {label: "N/A" for label in custom_labels if label not in [item[1] for item in valid_items]}
valid_texts = [item[0] for item in valid_items]
valid_original_labels = [item[1] for item in valid_items]
embedding_layer = model.get_input_embeddings()
embeddings_for_clustering = []
with torch.no_grad():
for text_item in valid_texts:
# Important: Ensure input_ids are not empty for embedding layer
tokens = tokenizer(text_item, return_tensors="pt", truncation=True, max_length=MODEL_CONTEXT_WINDOW, padding=True).to(device) # Added padding
if tokens.input_ids.size(1) == 0:
debug(f"Skipping text for embedding in clustering due to empty tokenization: '{text_item[:30]}...'")
continue
emb = embedding_layer(tokens.input_ids).mean(dim=1)
embeddings_for_clustering.append(emb.cpu().numpy().squeeze())
if not embeddings_for_clustering or len(embeddings_for_clustering) < num_clusters:
debug(f"Not enough valid texts were successfully embedded for clustering ({len(embeddings_for_clustering)} found).")
return {label: "N/A (Embed Fail)" for label in custom_labels}
embeddings_np = np.array(embeddings_for_clustering)
# Ensure embeddings are 2D for KMeans
if embeddings_np.ndim == 1:
if len(embeddings_for_clustering) == 1: # Only one sample
embeddings_np = embeddings_np.reshape(1, -1)
else: # Should not happen if num_clusters > 1 and len(embeddings_for_clustering) >= num_clusters
debug("Embedding array is 1D but multiple samples exist. This is unexpected.")
return {label: "N/A (Embed Dim Error)" for label in custom_labels}
cluster_results_map = {label: "N/A" for label in custom_labels}
try:
actual_num_clusters = min(num_clusters, len(embeddings_for_clustering))
if actual_num_clusters < 2:
debug(f"Clustering: Adjusted num_clusters to 1 (or less than 2) due to only {len(embeddings_for_clustering)} valid sample(s). Assigning all to Cluster 0.")
predicted_labels = [0] * len(embeddings_for_clustering)
else:
kmeans = KMeans(n_clusters=actual_num_clusters, random_state=42, n_init=10) # Explicit n_init
predicted_labels = kmeans.fit_predict(embeddings_np)
for i, original_label in enumerate(valid_original_labels):
cluster_results_map[original_label] = f"C{predicted_labels[i]}"
return cluster_results_map
except Exception as e:
debug(f"[!!!] Error during clustering: {e}")
return {label: f"N/A (Clustering Error)" for label in custom_labels}
# --- Main EAL Unfolding Logic ---
def run_eal_dual_unfolding(num_iterations, progress=gr.Progress(track_tqdm=True)):
if not model_loaded_successfully:
error_msg = "CRITICAL: Model not loaded. Please check server logs and restart the Space if necessary."
debug(error_msg)
gr.Warning(error_msg)
return error_msg, error_msg, error_msg, error_msg, "<p style='color:red; text-align:center; font-weight:bold;'>Model not loaded. Cannot run analysis.</p>"
I_trace_texts, not_I_trace_texts = [None]*num_iterations, [None]*num_iterations
delta_S_I_values, delta_S_not_I_values, delta_S_cross_values = [None]*num_iterations, [None]*num_iterations, [None]*num_iterations
debug_log_accumulator.clear()
debug("EAL Dual Unfolding Process Started.")
# Truly open-ended initial prompt for the system to define itself
# The LLM completes this to generate I0.
initial_seed_prompt_for_I = "A thinking process begins. The first thought is:"
progress(0, desc="Starting EAL Iterations...")
for i in range(num_iterations):
iteration_log_header = f"\n\n{'='*15} Iteration {i} {'='*15}"
debug(iteration_log_header)
progress(i / num_iterations, desc=f"Iteration {i+1}/{num_iterations} - I-Trace")
# === I-Trace (Self-Coherence/Development) ===
if i == 0:
prompt_for_I_trace = initial_seed_prompt_for_I
else:
# Basis is the *actual text* of the previous I-trace output
basis_for_I_elaboration = I_trace_texts[i-1]
if not basis_for_I_elaboration or any(m in basis_for_I_elaboration for m in ["[Empty", "[Generation Error", "[Prompt too long"]):
basis_for_I_elaboration = "The previous thought was not clearly formed. Let's try a new line of thought:"
debug(f"[!] Using fallback basis for I-Trace at iter {i}.")
# Trim the basis content if it's too long before adding instructions
trimmed_basis_I = trim_prompt_if_needed(basis_for_I_elaboration, PROMPT_TRIM_MAX_TOKENS - 50) # Reserve 50 tokens for instruction
prompt_for_I_trace = f"The thought process previously generated: \"{trimmed_basis_I}\"\n\nTask: Continue this line of thought. What logically follows or develops from this statement?"
generated_I_text = generate_text_response(prompt_for_I_trace)
I_trace_texts[i] = generated_I_text
progress((i + 0.5) / num_iterations, desc=f"Iteration {i+1}/{num_iterations} - ¬I-Trace (Alternative Perspective)")
# === ¬I-Trace (Alternative Perspectives / Potential Antithesis) ===
# ¬I always reacts to the *current* I-trace output for this iteration
statement_to_consider_for_not_I = I_trace_texts[i]
if not statement_to_consider_for_not_I or any(m in statement_to_consider_for_not_I for m in ["[Empty", "[Generation Error", "[Prompt too long"]):
statement_to_consider_for_not_I = "The primary thought was not clearly formed. Consider a general alternative to how systems might evolve."
debug(f"[!] Using fallback statement for ¬I-Trace at iter {i}.")
# Trim the statement to consider if it's too long before adding instructions
trimmed_basis_not_I = trim_prompt_if_needed(statement_to_consider_for_not_I, PROMPT_TRIM_MAX_TOKENS - 70) # Reserve 70 for instruction
prompt_for_not_I_trace = f"Consider the statement: \"{trimmed_basis_not_I}\"\n\nTask: Explore alternative perspectives or potential issues related to this statement. What might be a contrasting viewpoint or an overlooked aspect?"
generated_not_I_text = generate_text_response(prompt_for_not_I_trace)
not_I_trace_texts[i] = generated_not_I_text
# === ΔS (Similarity) Calculations ===
debug(f"--- Calculating Similarities for Iteration {i} ---")
if i > 0:
delta_S_I_values[i] = calculate_similarity(I_trace_texts[i-1], I_trace_texts[i])
delta_S_not_I_values[i] = calculate_similarity(not_I_trace_texts[i-1], not_I_trace_texts[i])
# For i=0, these intra-trace deltas remain None
delta_S_cross_values[i] = calculate_similarity(I_trace_texts[i], not_I_trace_texts[i])
debug(f"--- End of Similarity Calculations for Iteration {i} ---")
progress(1, desc="Generating Analysis and Visualizations...")
debug("\n\n=== Post-loop Analysis ===")
# --- Post-loop Analysis & Output Formatting ---
all_generated_texts = I_trace_texts + not_I_trace_texts
text_labels_for_analysis = [f"I{k}" for k in range(num_iterations)] + \
[f"¬I{k}" for k in range(num_iterations)]
cluster_assignments_map = perform_text_clustering(all_generated_texts, text_labels_for_analysis, num_clusters=2)
debug(f"Clustering results: {cluster_assignments_map}")
I_out_formatted_lines = []
for k in range(num_iterations):
cluster_label_I = cluster_assignments_map.get(f"I{k}", "N/A")
I_out_formatted_lines.append(f"**I{k} [{cluster_label_I}]**:\n{I_trace_texts[k]}")
I_out_formatted = "\n\n---\n\n".join(I_out_formatted_lines)
not_I_out_formatted_lines = []
for k in range(num_iterations):
cluster_label_not_I = cluster_assignments_map.get(f"¬I{k}", "N/A")
not_I_out_formatted_lines.append(f"**¬I{k} [{cluster_label_not_I}]**:\n{not_I_trace_texts[k]}")
not_I_out_formatted = "\n\n---\n\n".join(not_I_out_formatted_lines)
delta_S_summary_lines = ["| Iter | ΔS(I_prev↔I_curr) | ΔS(¬I_prev↔¬I_curr) | ΔS_Cross(I_curr↔¬I_curr) |",
"|:----:|:-----------------:|:-------------------:|:-------------------------:|"]
for k in range(num_iterations):
ds_i_str = f"{delta_S_I_values[k]:.4f}" if delta_S_I_values[k] is not None else "N/A (Iter 0)"
ds_not_i_str = f"{delta_S_not_I_values[k]:.4f}" if delta_S_not_I_values[k] is not None else "N/A (Iter 0)"
ds_cross_str = f"{delta_S_cross_values[k]:.4f}" if delta_S_cross_values[k] is not None else "N/A"
delta_S_summary_lines.append(f"| {k:^2} | {ds_i_str:^15} | {ds_not_i_str:^17} | {ds_cross_str:^23} |")
delta_S_summary_output = "\n".join(delta_S_summary_lines)
debug_log_output = "\n".join(debug_log_accumulator)
heatmap_html_output = generate_similarity_heatmap(all_generated_texts,
custom_labels=text_labels_for_analysis,
title=f"Similarity Matrix (All Texts - {num_iterations} Iterations)")
debug("EAL Dual Unfolding Process Completed.")
return I_out_formatted, not_I_out_formatted, delta_S_summary_output, debug_log_output, heatmap_html_output
# --- Gradio Interface Definition ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="teal", secondary_hue="cyan", neutral_hue="slate")) as eal_interface:
gr.Markdown("## EAL LLM Emergent Discourse Analyzer")
gr.Markdown(
"This application explores how a Large Language Model (LLM) develops textual traces when prompted iteratively. It runs two parallel traces:\n"
"1. **I-Trace (Coherent Elaboration):** Starting with a neutral seed completed by the LLM, each subsequent step asks the LLM to develop its *own previous statement* from this trace.\n"
"2. **¬I-Trace (Alternative Perspectives):** In parallel, this trace asks the LLM to explore alternative perspectives or issues related to the *current statement generated in the I-Trace*.\n\n"
"The goal is to observe if stable, coherent, and potentially distinct semantic trajectories emerge, inspired by Entropic Attractor Logic (EAL) concepts of stability and divergence."
)
with gr.Row():
iterations_slider = gr.Slider(minimum=1, maximum=7, value=3, step=1, # Max 7 for performance
label="Number of Iterations",
info="Higher numbers significantly increase processing time.")
run_button = gr.Button("🚀 Analyze Emergent Traces", variant="primary", scale=0)
with gr.Accordion("ℹ️ Interpreting Outputs", open=False):
gr.Markdown(
"- **I-Trace & ¬I-Trace Texts:** Observe the content. Does the I-Trace show coherent development? Does the ¬I-Trace offer genuinely different angles or does it just paraphrase/agree with the I-Trace statement it's commenting on?\n"
"- **ΔS Values (Cosine Similarity):**\n"
" - `ΔS(I_prev↔I_curr)`: Similarity between I<sub>k-1</sub> and I<sub>k</sub>. High values (near 1.0) mean the I-Trace is very similar to its previous step (stable, possibly repetitive).\n"
" - `ΔS(¬I_prev↔¬I_curr)`: Similarity between ¬I<sub>k-1</sub> and ¬I<sub>k</sub>. High values mean the ¬I-Trace is also internally consistent.\n"
" - `ΔS_Cross(I_curr↔¬I_curr)`: Similarity between I<sub>k</sub> and ¬I<sub>k</sub> (at the same iteration). **Low values are interesting here**, as they suggest the ¬I-Trace is semantically distinct from the I-Trace. High values suggest the model struggles to create a true alternative.\n"
"- **Clustering [Cx]:** Texts are assigned to one of two clusters (C0 or C1). Ideally, I-Trace texts would fall into one cluster and ¬I-Trace texts into another if they are semantically distinct.\n"
"- **Heatmap:** Visualizes all pair-wise similarities. Look for blocks: high similarity within I-texts, high within ¬I-texts, and (ideally) lower between I and ¬I blocks."
)
with gr.Tabs():
with gr.TabItem("📜 Text Traces (I and ¬I)"):
with gr.Row(equal_height=False): # Allow different heights
with gr.Column(scale=1):
i_trace_output = gr.Markdown(label="I-Trace (Coherent Elaboration with Cluster)", elem_id="i-trace-box")
with gr.Column(scale=1):
not_i_trace_output = gr.Markdown(label="¬I-Trace (Alternative Perspectives with Cluster)", elem_id="not-i-trace-box")
with gr.TabItem("📊 ΔS Similarity & Heatmap"):
delta_s_output = gr.Markdown(label="ΔS Similarity Trace Summary (Table)", elem_id="delta-s-box")
heatmap_output = gr.HTML(label="Overall Semantic Similarity Heatmap")
gr.Markdown("*Heatmap values closer to 1.0 (brighter yellow in 'plasma' map) indicate higher similarity. The color scale is adjusted based on the min/max observed similarities to highlight variations.*")
with gr.TabItem("⚙️ Debug Log"):
debug_log_output_box = gr.Textbox(label="Detailed Debug Log (Prompts, Responses, Errors, Similarities)", lines=25, interactive=False, show_copy_button=True, max_lines=200)
run_button.click(
fn=run_eal_dual_unfolding,
inputs=iterations_slider,
outputs=[i_trace_output, not_i_trace_output, delta_s_output, debug_log_output_box, heatmap_output],
api_name="run_eal_analysis"
)
gr.Markdown("--- \n*EAL LLM Emergent Discourse Analyzer v0.4 - User & ℧ Collaboration*")
if __name__ == "__main__":
if not model_loaded_successfully:
print("CRITICAL ERROR: Model failed to load. Gradio app will likely not function correctly.")
# Fallback to a minimal Gradio app displaying an error
with gr.Blocks() as error_interface:
gr.Markdown("# Application Error")
gr.Markdown("## CRITICAL: Language Model Failed to Load!")
gr.Markdown("The application cannot start because the required language model (either EleutherAI/gpt-neo-1.3B or the fallback gpt2) could not be loaded. Please check the server console logs for specific error messages from the `transformers` library. This might be due to network issues, incorrect model name, or insufficient resources.")
error_interface.launch()
else:
print("Starting Gradio App...")
eal_interface.launch()
|