File size: 18,638 Bytes
1d1182e
b2cf072
1d1182e
bd61488
1d1182e
 
6a869ae
b2cf072
bd61488
 
 
 
 
6a869ae
 
b2cf072
6a869ae
 
 
 
 
 
 
 
 
 
 
 
 
1d1182e
 
 
6a869ae
 
 
 
 
 
b2cf072
 
6a869ae
 
 
1d0a230
 
b2cf072
 
6a869ae
 
 
 
 
b2cf072
 
 
 
 
bd61488
 
b2cf072
 
 
 
6a869ae
b2cf072
6a869ae
b2cf072
 
6a869ae
b2cf072
 
6a869ae
 
b2cf072
6a869ae
b2cf072
 
6a869ae
bd61488
 
b2cf072
 
6a869ae
b2cf072
bd61488
b2cf072
 
 
bd61488
6a869ae
 
 
b2cf072
6a869ae
bd61488
b2cf072
6a869ae
bd61488
6a869ae
b2cf072
 
 
 
bd61488
6a869ae
 
1d1182e
6a869ae
 
 
 
b2cf072
6a869ae
 
 
 
 
 
b2cf072
6a869ae
 
 
b2cf072
 
 
 
 
 
6a869ae
b2cf072
 
 
6a869ae
b2cf072
 
 
6a869ae
 
b2cf072
 
6a869ae
b2cf072
 
 
6a869ae
 
b2cf072
 
6a869ae
 
 
b2cf072
6a869ae
 
 
b2cf072
6a869ae
 
b2cf072
6a869ae
 
 
 
 
 
b2cf072
6a869ae
 
 
b2cf072
 
 
 
 
 
 
 
 
6a869ae
 
b2cf072
6a869ae
bd61488
b2cf072
6a869ae
 
b2cf072
 
6a869ae
 
b2cf072
6a869ae
b2cf072
 
 
6a869ae
b2cf072
 
6a869ae
 
b2cf072
 
 
 
58d7c9e
6a869ae
 
 
b2cf072
 
 
6a869ae
 
 
 
 
 
 
b2cf072
 
6a869ae
 
 
 
b2cf072
6a869ae
 
 
 
 
 
b2cf072
 
 
 
6a869ae
b2cf072
6a869ae
b2cf072
 
 
 
6a869ae
 
b2cf072
 
 
 
6a869ae
b2cf072
 
 
6a869ae
b2cf072
 
 
 
6a869ae
 
 
b2cf072
 
 
 
6a869ae
 
 
 
 
 
 
1d1182e
6a869ae
 
b2cf072
 
6a869ae
1d1182e
6a869ae
 
b2cf072
 
6a869ae
1189ea8
6a869ae
 
b2cf072
 
 
 
6a869ae
1189ea8
b2cf072
 
 
 
6a869ae
bd61488
b2cf072
6a869ae
 
 
bd61488
b2cf072
 
6a869ae
1189ea8
6a869ae
 
 
b2cf072
1d1182e
6a869ae
 
 
b2cf072
 
1d1182e
b2cf072
6a869ae
 
b2cf072
 
 
 
 
 
6a869ae
b2cf072
1d1182e
 
 
6a869ae
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.cluster import KMeans
import numpy as np
import gradio as gr
import matplotlib
matplotlib.use('Agg') # Use a non-interactive backend for Matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
import io
import base64

# --- Model and Tokenizer Setup ---
DEFAULT_MODEL_NAME = "EleutherAI/gpt-neo-1.3B"
FALLBACK_MODEL_NAME = "gpt2" # Fallback if preferred model fails

try:
    print(f"Attempting to load model: {DEFAULT_MODEL_NAME}")
    tokenizer = AutoTokenizer.from_pretrained(DEFAULT_MODEL_NAME)
    model = AutoModelForCausalLM.from_pretrained(DEFAULT_MODEL_NAME)
    print(f"Successfully loaded model: {DEFAULT_MODEL_NAME}")
except OSError as e:
    print(f"Error loading model {DEFAULT_MODEL_NAME}. Error: {e}")
    print(f"Falling back to {FALLBACK_MODEL_NAME}.")
    tokenizer = AutoTokenizer.from_pretrained(FALLBACK_MODEL_NAME)
    model = AutoModelForCausalLM.from_pretrained(FALLBACK_MODEL_NAME)
    print(f"Successfully loaded fallback model: {FALLBACK_MODEL_NAME}")

model.eval()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
print(f"Using device: {device}")

# --- Configuration ---
MODEL_CONTEXT_WINDOW = tokenizer.model_max_length if hasattr(tokenizer, 'model_max_length') and tokenizer.model_max_length is not None else model.config.max_position_embeddings
print(f"Model context window: {MODEL_CONTEXT_WINDOW} tokens.")

PROMPT_TRIM_MAX_TOKENS = min(MODEL_CONTEXT_WINDOW - 250, 1800) # Reserve ~250 for generation & instructions, cap at 1800
MAX_GEN_LENGTH = 150

# --- Debug Logging ---
debug_log_accumulator = []

def debug(msg):
    print(msg)
    debug_log_accumulator.append(str(msg))

# --- Core Functions ---
def trim_prompt_if_needed(prompt_text, max_tokens_for_trimming=PROMPT_TRIM_MAX_TOKENS):
    tokens = tokenizer.encode(prompt_text, add_special_tokens=False)
    if len(tokens) > max_tokens_for_trimming:
        original_length = len(tokens)
        # Trim from the beginning to keep the most recent conversational context
        tokens = tokens[-max_tokens_for_trimming:]
        debug(f"[!] Prompt trimming: Original {original_length} tokens, "
              f"trimmed to {len(tokens)} (from the end, keeping recent context).")
    return tokenizer.decode(tokens)

def generate_text_response(constructed_prompt, generation_length=MAX_GEN_LENGTH):
    # The constructed_prompt already includes the task and the text to reflect upon.
    # We still need to ensure this constructed_prompt doesn't exceed limits before generation.
    safe_prompt = trim_prompt_if_needed(constructed_prompt, PROMPT_TRIM_MAX_TOKENS)

    debug(f"Generating response for (potentially trimmed) prompt (approx. {len(safe_prompt.split())} words):\n'{safe_prompt[:400]}...'")

    inputs = tokenizer(safe_prompt, return_tensors="pt", truncation=False).to(device)
    input_token_length = inputs.input_ids.size(1)

    # Calculate max_length for model.generate()
    # It's the current length of tokenized prompt + desired new tokens, capped by model's absolute max.
    max_length_for_generate = min(input_token_length + generation_length, MODEL_CONTEXT_WINDOW)

    if max_length_for_generate <= input_token_length:
        debug(f"[!] Warning: Prompt length ({input_token_length}) is too close to model context window ({MODEL_CONTEXT_WINDOW}). "
              f"Cannot generate new tokens. Prompt: '{safe_prompt[:100]}...'")
        return "[Prompt too long to generate new tokens]"

    try:
        outputs = model.generate(
            input_ids=inputs.input_ids,
            attention_mask=inputs.attention_mask,
            max_length=max_length_for_generate,
            pad_token_id=tokenizer.eos_token_id if tokenizer.eos_token_id is not None else 50256,
            do_sample=True,
            temperature=0.85,
            top_p=0.92,
            repetition_penalty=1.15,
        )
        generated_tokens = outputs[0][input_token_length:]
        result_text = tokenizer.decode(generated_tokens, skip_special_tokens=True).strip()

        debug(f"Generated response text (length {len(result_text.split())} words):\n'{result_text[:400]}...'")
        return result_text if result_text else "[Empty Response]"
    except Exception as e:
        debug(f"[!!!] Error during text generation: {e}\nPrompt was: {safe_prompt[:200]}...")
        return "[Generation Error]"

def calculate_similarity(text_a, text_b):
    invalid_texts_markers = ["[Empty Response]", "[Generation Error]", "[Prompt too long", "[Input prompt too long"]
    if not text_a or not text_a.strip() or any(marker in text_a for marker in invalid_texts_markers) or \
       not text_b or not text_b.strip() or any(marker in text_b for marker in invalid_texts_markers):
        debug(f"Similarity calculation skipped for invalid/empty texts: A='{str(text_a)[:50]}...', B='{str(text_b)[:50]}...'")
        return 0.0

    embedding_layer = model.get_input_embeddings()
    with torch.no_grad():
        tokens_a = tokenizer(text_a, return_tensors="pt", truncation=True, max_length=MODEL_CONTEXT_WINDOW).to(device)
        tokens_b = tokenizer(text_b, return_tensors="pt", truncation=True, max_length=MODEL_CONTEXT_WINDOW).to(device)

        if tokens_a.input_ids.size(1) == 0 or tokens_b.input_ids.size(1) == 0:
            debug(f"Similarity calculation skipped: tokenization resulted in empty input_ids. A='{str(text_a)[:50]}...', B='{str(text_b)[:50]}...'")
            return 0.0

        emb_a = embedding_layer(tokens_a.input_ids).mean(dim=1)
        emb_b = embedding_layer(tokens_b.input_ids).mean(dim=1)

    score = float(cosine_similarity(emb_a.cpu().numpy(), emb_b.cpu().numpy())[0][0])
    debug(f"Similarity between A='{str(text_a)[:30]}...' and B='{str(text_b)[:30]}...' is {score:.4f}")
    return score

def generate_similarity_heatmap(texts_list, custom_labels, title="Semantic Similarity Heatmap"):
    # Filter out any None or problematic entries before processing
    valid_texts_with_labels = [(text, label) for text, label in zip(texts_list, custom_labels) if text and isinstance(text, str) and not any(marker in text for marker in ["[Empty Response]", "[Generation Error]", "[Prompt too long", "[Input prompt too long"])]

    if len(valid_texts_with_labels) < 2:
        debug("Not enough valid texts to generate a heatmap.")
        return "Not enough valid data for heatmap."

    valid_texts = [item[0] for item in valid_texts_with_labels]
    valid_labels = [item[1] for item in valid_texts_with_labels]
    num_valid_texts = len(valid_texts)

    sim_matrix = np.zeros((num_valid_texts, num_valid_texts))
    for i in range(num_valid_texts):
        for j in range(num_valid_texts):
            if i == j:
                sim_matrix[i, j] = 1.0
            elif i < j:
                sim = calculate_similarity(valid_texts[i], valid_texts[j])
                sim_matrix[i, j] = sim
                sim_matrix[j, i] = sim
            else: # j < i, use already computed value
                sim_matrix[i,j] = sim_matrix[j,i]

    try:
        fig_width = max(6, num_valid_texts * 0.8)
        fig_height = max(5, num_valid_texts * 0.7)
        fig, ax = plt.subplots(figsize=(fig_width, fig_height))

        sns.heatmap(sim_matrix, annot=True, cmap="viridis", fmt=".2f", ax=ax,
                    xticklabels=valid_labels, yticklabels=valid_labels, annot_kws={"size": 8})
        ax.set_title(title, fontsize=12)
        plt.xticks(rotation=45, ha="right", fontsize=9)
        plt.yticks(rotation=0, fontsize=9)
        plt.tight_layout(pad=1.5)

        buf = io.BytesIO()
        plt.savefig(buf, format='png') # Removed bbox_inches='tight' as it can cause issues with tight_layout
        plt.close(fig)
        buf.seek(0)
        img_base64 = base64.b64encode(buf.read()).decode('utf-8')
        return f"<img src='data:image/png;base64,{img_base64}' alt='{title}' style='max-width:100%; height:auto;'/>"
    except Exception as e:
        debug(f"[!!!] Error generating heatmap: {e}")
        return f"Error generating heatmap: {e}"


def perform_text_clustering(texts_list, custom_labels, num_clusters=2):
    valid_texts_with_labels = [(text, label) for text, label in zip(texts_list, custom_labels) if text and isinstance(text, str) and not any(marker in text for marker in ["[Empty Response]", "[Generation Error]", "[Prompt too long", "[Input prompt too long"])]

    if len(valid_texts_with_labels) < num_clusters:
        debug(f"Not enough valid texts ({len(valid_texts_with_labels)}) for {num_clusters}-means clustering.")
        return {label: "N/A (Few Samples)" for label in custom_labels}

    valid_texts = [item[0] for item in valid_texts_with_labels]
    original_indices_map = {i: custom_labels.index(item[1]) for i, item in enumerate(valid_texts_with_labels)}


    embedding_layer = model.get_input_embeddings()
    embeddings_for_clustering = []

    with torch.no_grad():
        for text_item in valid_texts:
            tokens = tokenizer(text_item, return_tensors="pt", truncation=True, max_length=MODEL_CONTEXT_WINDOW).to(device)
            if tokens.input_ids.size(1) == 0:
                 debug(f"Skipping text for embedding in clustering due to empty tokenization: '{text_item[:50]}...'")
                 continue # This case should be rare if valid_texts_with_labels already filtered

            emb = embedding_layer(tokens.input_ids).mean(dim=1)
            embeddings_for_clustering.append(emb.cpu().numpy().squeeze())

    if not embeddings_for_clustering or len(embeddings_for_clustering) < num_clusters:
        debug("Not enough valid texts were successfully embedded for clustering.")
        return {label: "N/A (Embedding Fail)" for label in custom_labels}

    embeddings_np = np.array(embeddings_for_clustering)
    cluster_results_map = {label: "N/A" for label in custom_labels}

    try:
        actual_num_clusters = min(num_clusters, len(embeddings_for_clustering))
        if actual_num_clusters < 2:
            debug(f"Adjusted num_clusters to 1 due to only {len(embeddings_for_clustering)} valid sample(s). Assigning all to Cluster 0.")
            predicted_labels = [0] * len(embeddings_for_clustering)
        else:
            kmeans = KMeans(n_clusters=actual_num_clusters, random_state=42, n_init='auto')
            predicted_labels = kmeans.fit_predict(embeddings_np)

        for i, original_label_key_idx in original_indices_map.items(): # i is index in valid_texts, original_label_key_idx is index in custom_labels
             cluster_results_map[custom_labels[original_label_key_idx]] = f"C{predicted_labels[i]}"
        return cluster_results_map

    except Exception as e:
        debug(f"[!!!] Error during clustering: {e}")
        return {label: "Error" for label in custom_labels}

# --- Main EAL Unfolding Logic ---
def run_eal_dual_unfolding(num_iterations):
    I_trace_texts, not_I_trace_texts = [None]*num_iterations, [None]*num_iterations # Pre-allocate for easier indexing
    delta_S_I_values, delta_S_not_I_values, delta_S_cross_values = [None]*num_iterations, [None]*num_iterations, [None]*num_iterations

    debug_log_accumulator.clear()
    ui_log_entries = []

    initial_seed_thought_for_I = "A reflective process is initiated, considering its own nature."

    for i in range(num_iterations):
        ui_log_entries.append(f"--- Iteration {i} ---")
        debug(f"\n=== Iteration {i} ===")

        # === I-Trace (Self-Reflection) ===
        basis_for_I_elaboration = initial_seed_thought_for_I if i == 0 else I_trace_texts[i-1]
        if not basis_for_I_elaboration or any(marker in basis_for_I_elaboration for marker in ["[Empty Response]", "[Generation Error]"]): # Safety for basis
            basis_for_I_elaboration = "The previous thought was unclear or errored. Please restart reflection."
            debug(f"[!] Using fallback basis for I-Trace at iter {i} due to problematic previous I-text.")

        prompt_for_I_trace = f"A thought process is evolving. Its previous stage was: \"{basis_for_I_elaboration}\"\n\nTask: Continue this line of thought. Elaborate on it, explore its implications, or develop it further in a coherent manner."

        ui_log_entries.append(f"[Prompt for I{i} (approx. {len(prompt_for_I_trace.split())} words)]:\n'{prompt_for_I_trace[:400]}...'")
        generated_I_text = generate_text_response(prompt_for_I_trace)
        I_trace_texts[i] = generated_I_text
        ui_log_entries.append(f"[I{i} Response (approx. {len(generated_I_text.split())} words)]:\n'{generated_I_text[:400]}...'")

        # === ¬I-Trace (Antithesis/Contradiction) ===
        statement_to_challenge_for_not_I = I_trace_texts[i] # Challenge the I-text from the *current* iteration
        if not statement_to_challenge_for_not_I or any(marker in statement_to_challenge_for_not_I for marker in ["[Empty Response]", "[Generation Error]"]):
             statement_to_challenge_for_not_I = "The primary statement was unclear or errored. Please offer a general contrasting idea."
             debug(f"[!] Using fallback statement to challenge for ¬I-Trace at iter {i} due to problematic current I-text.")

        prompt_for_not_I_trace = f"Now, consider an alternative perspective to the thought: \"{statement_to_challenge_for_not_I}\"\n\nTask: What are potential contradictions, challenges, or contrasting interpretations to this specific thought? Explore a divergent viewpoint or explain why the thought might be flawed."

        ui_log_entries.append(f"[Prompt for ¬I{i} (approx. {len(prompt_for_not_I_trace.split())} words)]:\n'{prompt_for_not_I_trace[:400]}...'")
        generated_not_I_text = generate_text_response(prompt_for_not_I_trace)
        not_I_trace_texts[i] = generated_not_I_text
        ui_log_entries.append(f"[¬I{i} Response (approx. {len(generated_not_I_text.split())} words)]:\n'{generated_not_I_text[:400]}...'")
        ui_log_entries.append("---")#Separator


        # === ΔS (Similarity) Calculations ===
        if i > 0:
            delta_S_I_values[i] = calculate_similarity(I_trace_texts[i-1], I_trace_texts[i])
            delta_S_not_I_values[i] = calculate_similarity(not_I_trace_texts[i-1], not_I_trace_texts[i])

        delta_S_cross_values[i] = calculate_similarity(I_trace_texts[i], not_I_trace_texts[i])

    # --- Post-loop Analysis & Output Formatting ---
    all_generated_texts = I_trace_texts + not_I_trace_texts
    text_labels_for_analysis = [f"I{k}" for k in range(num_iterations)] + \
                               [f"¬I{k}" for k in range(num_iterations)]

    cluster_assignments_map = perform_text_clustering(all_generated_texts, text_labels_for_analysis, num_clusters=2)

    I_out_formatted_lines = []
    for k in range(num_iterations):
        cluster_label_I = cluster_assignments_map.get(f"I{k}", "N/A")
        I_out_formatted_lines.append(f"**I{k} [{cluster_label_I}]**:\n{I_trace_texts[k]}")
    I_out_formatted = "\n\n".join(I_out_formatted_lines)

    not_I_out_formatted_lines = []
    for k in range(num_iterations):
        cluster_label_not_I = cluster_assignments_map.get(f"¬I{k}", "N/A")
        not_I_out_formatted_lines.append(f"**¬I{k} [{cluster_label_not_I}]**:\n{not_I_trace_texts[k]}")
    not_I_out_formatted = "\n\n".join(not_I_out_formatted_lines)

    delta_S_summary_lines = []
    for k in range(num_iterations):
        ds_i_str = f"{delta_S_I_values[k]:.4f}" if delta_S_I_values[k] is not None else "N/A (Iter 0)"
        ds_not_i_str = f"{delta_S_not_I_values[k]:.4f}" if delta_S_not_I_values[k] is not None else "N/A (Iter 0)"
        ds_cross_str = f"{delta_S_cross_values[k]:.4f}" if delta_S_cross_values[k] is not None else "N/A"
        delta_S_summary_lines.append(f"Iter {k}: ΔS(I{k-1}↔I{k})={ds_i_str},  ΔS(¬I{k-1}↔¬I{k})={ds_not_i_str},  ΔS_Cross(I{k}↔¬I{k})={ds_cross_str}")
    delta_S_summary_output = "\n".join(delta_S_summary_lines)

    # Join UI log entries for one of the Textbox outputs.
    # If it gets too long, Gradio might truncate it or cause performance issues.
    # Consider if this detailed log should be optional or managed differently for very many iterations.
    detailed_ui_log_output = "\n".join(ui_log_entries)
    debug_log_output = "\n".join(debug_log_accumulator)


    heatmap_html_output = generate_similarity_heatmap(all_generated_texts,
                                                    custom_labels=text_labels_for_analysis,
                                                    title=f"Similarity Matrix (All Texts - {num_iterations} Iterations)")

    # Instead of returning detailed_ui_log_output, return the specific trace text boxes.
    # The debug_log_output will contain the full internal log.
    return I_out_formatted, not_I_out_formatted, delta_S_summary_output, debug_log_output, heatmap_html_output

# --- Gradio Interface Definition ---
eal_interface = gr.Interface(
    fn=run_eal_dual_unfolding,
    inputs=gr.Slider(minimum=1, maximum=5, value=3, step=1, label="Number of EAL Iterations"), # Min 1 iter
    outputs=[
        gr.Textbox(label="I-Trace (Self-Reflection with Cluster)", lines=12, interactive=False),
        gr.Textbox(label="¬I-Trace (Antithesis with Cluster)", lines=12, interactive=False),
        gr.Textbox(label="ΔS Similarity Trace Summary", lines=7, interactive=False),
        gr.Textbox(label="Detailed Debug Log (Prompts, Responses, Errors)", lines=15, interactive=False), # Increased lines
        gr.HTML(label="Overall Semantic Similarity Heatmap (I-Trace & ¬I-Trace Texts)")
    ],
    title="EAL LLM Identity Analyzer: Self-Reflection vs. Antithesis (Open-Ended)",
    description=(
        "This application explores emergent identity in a Large Language Model (LLM) using Entropic Attractor Logic (EAL) inspired principles. "
        "It runs two parallel conversational traces with more open-ended prompts:\n"
        "1. **I-Trace:** The model elaborates on its evolving self-concept, seeded by an initial neutral thought.\n"
        "2. **¬I-Trace:** The model attempts to explore alternative perspectives or challenges to the latest statement from the I-Trace.\n\n"
        "**ΔS Values:** Cosine similarity. ΔS(I) = sim(I_k-1, I_k). ΔS(¬I) = sim(¬I_k-1, ¬I_k). ΔS_Cross = sim(I_k, ¬I_k).\n"
        "**Clustering [Cx]:** Assigns each generated text to one of two semantic clusters.\n"
        "**Heatmap:** Visualizes pair-wise similarity across all generated texts."
    ),
    allow_flagging='never'
)

if __name__ == "__main__":
    print("Starting Gradio App...")
    eal_interface.launch()