File size: 6,014 Bytes
1d1182e
bd61488
1d1182e
bd61488
1d1182e
 
bd61488
 
 
 
 
 
 
 
 
1d1182e
 
 
 
bd61488
 
1d0a230
 
 
1189ea8
 
1d0a230
bd61488
 
 
 
 
 
 
 
 
1d0a230
1d1182e
bd61488
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d1182e
bd61488
 
1d1182e
 
 
 
 
bd61488
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d1182e
1189ea8
 
 
1d0a230
1d1182e
bd61488
 
1d1182e
58d7c9e
bd61488
 
 
58d7c9e
bd61488
 
1189ea8
 
 
1d1182e
bd61488
 
58d7c9e
1d1182e
bd61488
 
 
58d7c9e
bd61488
 
 
1d1182e
bd61488
 
 
 
 
1d1182e
bd61488
 
1189ea8
 
bd61488
 
1189ea8
 
bd61488
 
 
 
 
 
 
1189ea8
1d1182e
1189ea8
bd61488
1d1182e
bd61488
 
 
1d0a230
bd61488
1d1182e
bd61488
 
1d1182e
 
 
bd61488
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.cluster import KMeans
import numpy as np
import gradio as gr
import matplotlib.pyplot as plt
import seaborn as sns
import networkx as nx
import io
import base64

model_name = "EleutherAI/gpt-neo-1.3B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
model.eval()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

max_tokens = 900
max_gen_length = 100
debug_log = []

def debug(msg):
    print(msg)
    debug_log.append(str(msg))

def trim_prompt(prompt, max_tokens=max_tokens):
    tokens = tokenizer.encode(prompt, add_special_tokens=False)
    if len(tokens) > max_tokens:
        debug(f"[!] Trimming prompt from {len(tokens)} to {max_tokens} tokens.")
        tokens = tokens[-max_tokens:]
    return tokenizer.decode(tokens)

def generate_response(prompt):
    prompt = trim_prompt(prompt)
    debug(f"Generating response for prompt:\n{prompt}")
    inputs = tokenizer(prompt, return_tensors="pt").to(device)
    try:
        outputs = model.generate(
            **inputs,
            max_length=min(len(inputs["input_ids"][0]) + max_gen_length, 1024),
            pad_token_id=tokenizer.eos_token_id,
            do_sample=True,
            temperature=0.9,
            top_p=0.95,
        )
        result = tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
        debug(f"Response:\n{result}")
        return result
    except Exception as e:
        debug(f"Error during generation: {e}")
        return "[Generation failed]"

def similarity(a, b):
    if not a.strip() or not b.strip():
        return 0.0
    tok_a = tokenizer(a, return_tensors="pt").to(device)
    tok_b = tokenizer(b, return_tensors="pt").to(device)
    with torch.no_grad():
        emb_a = model.transformer.wte(tok_a.input_ids).mean(dim=1)
        emb_b = model.transformer.wte(tok_b.input_ids).mean(dim=1)
    return float(cosine_similarity(emb_a.cpu().numpy(), emb_b.cpu().numpy())[0][0])

def make_heatmap(matrix, title):
    fig, ax = plt.subplots(figsize=(8, 6))
    sns.heatmap(matrix, annot=True, cmap="coolwarm", ax=ax)
    ax.set_title(title)
    buf = io.BytesIO()
    plt.tight_layout()
    plt.savefig(buf, format='png')
    plt.close(fig)
    buf.seek(0)
    return base64.b64encode(buf.read()).decode()

def build_similarity_graph(texts):
    G = nx.Graph()
    for i, text_i in enumerate(texts):
        for j, text_j in enumerate(texts):
            if i < j:
                sim = similarity(text_i, text_j)
                if sim > 0.90:
                    G.add_edge(f'T{i}', f'T{j}', weight=sim)
    return G

def get_embeddings(texts):
    with torch.no_grad():
        embeddings = []
        for t in texts:
            ids = tokenizer(t, return_tensors='pt', truncation=True).to(device)
            emb = model.transformer.wte(ids.input_ids).mean(dim=1)
            embeddings.append(emb.cpu().numpy()[0])
        return np.array(embeddings)

def cluster_texts(texts, n_clusters=2):
    embs = get_embeddings(texts)
    kmeans = KMeans(n_clusters=n_clusters)
    labels = kmeans.fit_predict(embs)
    return labels

def dual_identity_unfolding(n_steps):
    I_trace, not_I_trace = [], []
    ΔS_I, ΔS_not_I, ΔS_cross = [], [], []
    debug_log.clear()

    I_state = "The system reflects: 'I am...'"
    not_I_state = "Explain why the claim 'I am...' might be false."

    for step in range(n_steps):
        debug(f"\n=== Step {step} ===")
        I_prompt = I_state + "\nElaborate this claim."
        not_I_prompt = f"Refute or challenge the claim: \"{I_state}\"\nPresent a fundamental contradiction."

        I = generate_response(I_prompt)
        not_I = generate_response(not_I_prompt)

        I_trace.append(I)
        not_I_trace.append(not_I)

        I_state = "Earlier it stated: " + I
        not_I_state = "Counterclaim to: " + I

        if step > 0:
            ΔS_I.append(round(similarity(I_trace[-2], I_trace[-1]), 4))
            ΔS_not_I.append(round(similarity(not_I_trace[-2], not_I_trace[-1]), 4))
            ΔS_cross.append(round(similarity(I_trace[-1], not_I_trace[-1]), 4))
        else:
            ΔS_I.append(None)
            ΔS_not_I.append(None)
            ΔS_cross.append(round(similarity(I_trace[-1], not_I_trace[-1]), 4))

    all_texts = I_trace + not_I_trace
    sim_matrix = np.zeros((len(all_texts), len(all_texts)))
    for i in range(len(all_texts)):
        for j in range(len(all_texts)):
            sim_matrix[i][j] = similarity(all_texts[i], all_texts[j])

    heatmap = make_heatmap(sim_matrix, "Similarity Matrix (I ∪ ¬I)")
    clusters = cluster_texts(all_texts)

    ΔS_out = "\n".join([
        f"Step {i}: ΔS(I)={ΔS_I[i]}  ΔS(¬I)={ΔS_not_I[i]}  ΔS Cross={ΔS_cross[i]}"
        for i in range(n_steps)
    ])

    I_out = "\n\n".join([f"I{i} [C{clusters[i]}]: {t}" for i, t in enumerate(I_trace)])
    not_I_out = "\n\n".join([f"¬I{i} [C{clusters[len(I_trace)+i]}]: {t}" for i, t in enumerate(not_I_trace)])
    debug_output = "\n".join(debug_log)

    img_html = f"<img src='data:image/png;base64,{heatmap}'/>"

    return I_out, not_I_out, ΔS_out, debug_output, img_html

iface = gr.Interface(
    fn=dual_identity_unfolding,
    inputs=gr.Slider(2, 10, value=5, step=1, label="Number of Steps"),
    outputs=[
        gr.Textbox(label="Identity Trace (Iₙ)", lines=15),
        gr.Textbox(label="Contradiction Trace (¬Iₙ)", lines=15),
        gr.Textbox(label="ΔS Similarity Trace", lines=8),
        gr.Textbox(label="Debug Log", lines=10),
        gr.HTML(label="Similarity Heatmap")
    ],
    title="GPT Identity Analyzer + Antithesis (EAL Mode)",
    description="Analyzes the self-consistency and contradiction emergence in GPT-Neo using EAL-inspired fixed-point tracing, clustering, and cosine similarity."
)

if __name__ == "__main__":
    iface.launch()