Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,70 @@
|
|
1 |
import streamlit as st
|
2 |
import yfinance as yf
|
3 |
import pandas as pd
|
4 |
-
import
|
5 |
-
from matplotlib import dates as mdates
|
6 |
-
import plotly.graph_objects as go
|
7 |
|
8 |
-
|
9 |
-
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
data =
|
|
|
20 |
|
21 |
-
|
22 |
-
delta = data['Adj Close'].diff()
|
23 |
-
gain = (delta.where(delta > 0, 0)).fillna(0)
|
24 |
-
loss = (-delta.where(delta < 0, 0)).fillna(0)
|
25 |
-
avg_gain = gain.rolling(window=14, min_periods=14).mean()
|
26 |
-
avg_loss = loss.rolling(window=14, min_periods=14).mean()
|
27 |
-
rs = avg_gain / avg_loss
|
28 |
-
rsi = 100 - (100 / (1 + rs))
|
29 |
-
|
30 |
-
# Calculate MACD
|
31 |
-
exp1 = data['Adj Close'].ewm(span=12, adjust=False).mean()
|
32 |
-
exp2 = data['Adj Close'].ewm(span=26, adjust=False).mean()
|
33 |
-
macd = exp1 - exp2
|
34 |
-
signal = macd.ewm(span=9, adjust=False).mean()
|
35 |
-
|
36 |
-
# Identify buy and sell signals
|
37 |
-
buy_signals = (macd > signal) & (macd.shift(1) <= signal.shift(1))
|
38 |
-
sell_signals = (macd < signal) & (macd.shift(1) >= signal.shift(1))
|
39 |
-
data['Buy Signal'] = buy_signals
|
40 |
-
data['Sell Signal'] = sell_signals
|
41 |
-
|
42 |
-
# Plotting
|
43 |
fig = go.Figure()
|
|
|
|
|
44 |
fig.add_trace(go.Candlestick(x=data.index,
|
45 |
open=data['Open'],
|
46 |
high=data['High'],
|
47 |
low=data['Low'],
|
48 |
-
close=data['Close'], name='
|
49 |
-
|
50 |
-
|
51 |
-
fig.add_trace(go.Scatter(x=data.index, y=
|
52 |
-
fig.
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import yfinance as yf
|
3 |
import pandas as pd
|
4 |
+
import plotly.graph_objs as go
|
|
|
|
|
5 |
|
6 |
+
def fetch_data(ticker, start_date, end_date):
|
7 |
+
data = yf.download(ticker, start=start_date, end=end_date)
|
8 |
+
return data
|
9 |
|
10 |
+
def calculate_indicators(data):
|
11 |
+
# Exponential Moving Averages for trend
|
12 |
+
data['EMA50'] = data['Close'].ewm(span=50, adjust=False).mean()
|
13 |
+
data['EMA200'] = data['Close'].ewm(span=200, adjust=False).mean()
|
14 |
+
|
15 |
+
# Relative Strength Index for momentum
|
16 |
+
delta = data['Close'].diff()
|
17 |
+
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
|
18 |
+
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
|
19 |
+
rs = gain / loss
|
20 |
+
data['RSI'] = 100 - (100 / (1 + rs))
|
21 |
+
|
22 |
+
return data
|
23 |
|
24 |
+
def identify_signals(data):
|
25 |
+
data['Buy Signal'] = (data['EMA50'] > data['EMA200']) & (data['RSI'] < 30)
|
26 |
+
data['Sell Signal'] = (data['EMA50'] < data['EMA200']) & (data['RSI'] > 70)
|
27 |
+
return data
|
28 |
|
29 |
+
def plot_data(data):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
fig = go.Figure()
|
31 |
+
|
32 |
+
# Adding price trace
|
33 |
fig.add_trace(go.Candlestick(x=data.index,
|
34 |
open=data['Open'],
|
35 |
high=data['High'],
|
36 |
low=data['Low'],
|
37 |
+
close=data['Close'], name='Candlestick'))
|
38 |
+
|
39 |
+
# Adding EMAs
|
40 |
+
fig.add_trace(go.Scatter(x=data.index, y=data['EMA50'], name='EMA 50', line=dict(color='blue', width=1.5)))
|
41 |
+
fig.add_trace(go.Scatter(x=data.index, y=data['EMA200'], name='EMA 200', line=dict(color='red', width=1.5)))
|
42 |
+
|
43 |
+
# Adding Buy and Sell signals
|
44 |
+
buys = data[data['Buy Signal']]
|
45 |
+
sells = data[data['Sell Signal']]
|
46 |
+
fig.add_trace(go.Scatter(x=buys.index, y=buys['Close'], mode='markers', name='Buy Signal', marker=dict(symbol='triangle-up', size=12, color='green')))
|
47 |
+
fig.add_trace(go.Scatter(x=sells.index, y=sells['Close'], mode='markers', name='Sell Signal', marker=dict(symbol='triangle-down', size=12, color='red')))
|
48 |
+
|
49 |
+
# Layout updates
|
50 |
+
fig.update_layout(title='Momentum Reversal Trading Strategy Visualization', xaxis_title='Date', yaxis_title='Price', template='plotly_dark')
|
51 |
+
fig.update_xaxes(rangeslider_visible=True)
|
52 |
+
|
53 |
+
return fig
|
54 |
+
|
55 |
+
def main():
|
56 |
+
st.title("Momentum Reversal Trading Strategy Visualization")
|
57 |
+
ticker = st.text_input("Enter the ticker symbol, e.g., 'AAPL'")
|
58 |
+
start_date = st.date_input("Select the start date")
|
59 |
+
end_date = st.date_input("Select the end date")
|
60 |
+
|
61 |
+
if st.button("Analyze"):
|
62 |
+
data = fetch_data(ticker, start_date, end_date)
|
63 |
+
data = calculate_indicators(data)
|
64 |
+
data = identify_signals(data)
|
65 |
+
fig = plot_data(data)
|
66 |
+
st.plotly_chart(fig, use_container_width=True)
|
67 |
+
|
68 |
+
if __name__ == "__main__":
|
69 |
+
main()
|
70 |
+
|