Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import yfinance as yf
|
3 |
+
import pandas as pd
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from matplotlib import dates as mdates
|
6 |
+
import plotly.graph_objects as go
|
7 |
+
|
8 |
+
# Initialize the Streamlit app
|
9 |
+
st.title('Momentum Reversal Trading Strategy Analysis')
|
10 |
+
|
11 |
+
# User input for asset ticker, start date, and end date
|
12 |
+
ticker = st.text_input('Enter the ticker symbol of the asset:', 'AAPL')
|
13 |
+
start_date = st.date_input('Start Date')
|
14 |
+
end_date = st.date_input('End Date')
|
15 |
+
analyze_button = st.button('Analyze')
|
16 |
+
|
17 |
+
if analyze_button:
|
18 |
+
# Fetch historical data from Yahoo Finance
|
19 |
+
data = yf.download(ticker, start=start_date, end=end_date)
|
20 |
+
|
21 |
+
# Calculate RSI
|
22 |
+
delta = data['Adj Close'].diff()
|
23 |
+
gain = (delta.where(delta > 0, 0)).fillna(0)
|
24 |
+
loss = (-delta.where(delta < 0, 0)).fillna(0)
|
25 |
+
avg_gain = gain.rolling(window=14, min_periods=14).mean()
|
26 |
+
avg_loss = loss.rolling(window=14, min_periods=14).mean()
|
27 |
+
rs = avg_gain / avg_loss
|
28 |
+
rsi = 100 - (100 / (1 + rs))
|
29 |
+
|
30 |
+
# Calculate MACD
|
31 |
+
exp1 = data['Adj Close'].ewm(span=12, adjust=False).mean()
|
32 |
+
exp2 = data['Adj Close'].ewm(span=26, adjust=False).mean()
|
33 |
+
macd = exp1 - exp2
|
34 |
+
signal = macd.ewm(span=9, adjust=False).mean()
|
35 |
+
|
36 |
+
# Identify buy and sell signals
|
37 |
+
buy_signals = (macd > signal) & (macd.shift(1) <= signal.shift(1))
|
38 |
+
sell_signals = (macd < signal) & (macd.shift(1) >= signal.shift(1))
|
39 |
+
data['Buy Signal'] = buy_signals
|
40 |
+
data['Sell Signal'] = sell_signals
|
41 |
+
|
42 |
+
# Plotting
|
43 |
+
fig = go.Figure()
|
44 |
+
fig.add_trace(go.Candlestick(x=data.index,
|
45 |
+
open=data['Open'],
|
46 |
+
high=data['High'],
|
47 |
+
low=data['Low'],
|
48 |
+
close=data['Close'], name='Market data'))
|
49 |
+
fig.add_trace(go.Scatter(x=data.index, y=rsi, name='RSI'))
|
50 |
+
fig.add_trace(go.Scatter(x=data.index, y=macd, name='MACD', line=dict(color='blue')))
|
51 |
+
fig.add_trace(go.Scatter(x=data.index, y=signal, name='Signal Line', line=dict(color='orange')))
|
52 |
+
fig.update_layout(title='Trading Signals', xaxis_title='Date', yaxis_title='Price')
|
53 |
+
st.plotly_chart(fig)
|
54 |
+
|
55 |
+
# Display Buy and Sell Signals in a table
|
56 |
+
signals = pd.DataFrame(index=data.index)
|
57 |
+
signals['Price'] = data['Adj Close']
|
58 |
+
signals['Buy'] = data['Buy Signal']
|
59 |
+
signals['Sell'] = data['Sell Signal']
|
60 |
+
signals_filtered = signals[(signals['Buy'] | signals['Sell'])]
|
61 |
+
st.table(signals_filtered)
|
62 |
+
|
63 |
+
# Streamlit app will run when this script is called
|