Spaces:
Sleeping
Sleeping
File size: 2,010 Bytes
d7784f0 ddff90b 7ce5b82 ddff90b 7ce5b82 ddff90b 0416a61 f2852e3 847adc5 0416a61 6d2e57c f2852e3 38efeba 847adc5 f2852e3 0416a61 f2852e3 ddff90b f2852e3 6d2e57c 7ead1f4 6d2e57c 0416a61 3ed57d7 1656abd f2852e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import nltk
nltk.download('stopwords')
import pandas as pd
#classify_abs is a dependency for extract_abs
import classify_abs
import extract_abs
#pd.set_option('display.max_colwidth', None)
import streamlit as st
########## Title for the Web App ##########
st.title("Epidemiology Extraction Pipeline for Rare Diseases")
st.subheader("National Center for Advancing Translational Sciences (NIH/NCATS)")
#### CHANGE SIDEBAR WIDTH ###
st.markdown(f'''
<style>
section[data-testid="stSidebar"] .css-ng1t4o {{width: 10rem;}}
section[data-testid="stSidebar"] .css-1d391kg {{width: 10rem;}}
</style>
''',unsafe_allow_html=True)
#max_results is Maximum number of PubMed ID's to retrieve BEFORE filtering
max_results = st.sidebar.number_input("Maximum number of articles to find in PubMed", min_value=1, max_value=None, value=50)
filtering = st.sidebar.radio("What type of filtering would you like?",('Strict', 'Lenient', 'None'))
extract_diseases = st.sidebar.checkbox("Extract Rare Diseases", value=False)
with st.spinner('Loading Epidemiology Models and Dependencies...'):
classify_model_vars = classify_abs.init_classify_model()
st.success('Epidemiology Classification Model Loaded!')
NER_pipeline, entity_classes = extract_abs.init_NER_pipeline()
st.success('Epidemiology Extraction Model Loaded!')
GARD_dict, max_length = extract_abs.load_GARD_diseases()
st.success('All Models and Dependencies Loaded!')
disease_or_gard_id = st.text_input("Input a rare disease term or GARD ID.", value="Fellman syndrome")
if disease_or_gard_id:
df = extract_abs.search_term_extraction(disease_or_gard_id, max_results, filtering,
NER_pipeline, entity_classes,
extract_diseases,GARD_dict, max_length,
classify_model_vars)
st.dataframe(df)
st.balloons()
#st.dataframe(data=None, width=None, height=None)
# st.code(body, language="python") |