Spaces:
Runtime error
Runtime error
Commit
·
0416a61
1
Parent(s):
7ce5b82
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,6 +5,26 @@ import extract_abs
|
|
| 5 |
#pd.set_option('display.max_colwidth', None)
|
| 6 |
import streamlit as st
|
| 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
#LSTM RNN Epi Classifier Model
|
| 9 |
classify_model_vars = classify_abs.init_classify_model()
|
| 10 |
|
|
@@ -15,11 +35,23 @@ GARD_dict, max_length = extract_abs.load_GARD_diseases()
|
|
| 15 |
NER_pipeline, entity_classes = extract_abs.init_NER_pipeline()
|
| 16 |
|
| 17 |
#max_results is Maximum number of PubMed ID's to retrieve BEFORE filtering
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
#filtering options are 'strict','lenient'(default), 'none'
|
| 20 |
if text:
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
st.
|
|
|
|
|
|
| 5 |
#pd.set_option('display.max_colwidth', None)
|
| 6 |
import streamlit as st
|
| 7 |
|
| 8 |
+
########## Title for the Web App ##########
|
| 9 |
+
st.title("Text Classification for Service Feedback")
|
| 10 |
+
|
| 11 |
+
#st.header(body, anchor=None)
|
| 12 |
+
#st.subheader(body, anchor=None)
|
| 13 |
+
#Anchor is for the URL, can be custom str
|
| 14 |
+
|
| 15 |
+
# https://docs.streamlit.io/library/api-reference/text/st.markdown
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
########## Create Input field ##########
|
| 21 |
+
disease_or_gard_id = st.text_input('Input a rare disease term or a GARD ID.', 'Fellman syndrome')
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
# st.code(body, language="python")
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
|
| 28 |
#LSTM RNN Epi Classifier Model
|
| 29 |
classify_model_vars = classify_abs.init_classify_model()
|
| 30 |
|
|
|
|
| 35 |
NER_pipeline, entity_classes = extract_abs.init_NER_pipeline()
|
| 36 |
|
| 37 |
#max_results is Maximum number of PubMed ID's to retrieve BEFORE filtering
|
| 38 |
+
max_results = st.sidebar.number_input(label, min_value=1, max_value=None, value=50)
|
| 39 |
+
# https://docs.streamlit.io/library/api-reference/widgets/st.number_input
|
| 40 |
+
|
| 41 |
+
# st.radio(label, options, index=0, format_func=special_internal_function, key=None, help=None, on_change=None, args=None, kwargs=None, *, disabled=False)
|
| 42 |
+
# https://docs.streamlit.io/library/api-reference/widgets/st.radio
|
| 43 |
+
filtering = st.sidebar.radio(
|
| 44 |
+
"What type of filtering would you like?",
|
| 45 |
+
('Strict', 'Lenient', 'None'))
|
| 46 |
+
|
| 47 |
+
extract_diseases = st.sidebar.checkbox("Extract Rare Diseases", value=False, key=None, help=None, on_change=None, args=None, kwargs=None, *, disabled=False)
|
| 48 |
+
# https://docs.streamlit.io/library/api-reference/widgets/st.checkbox
|
| 49 |
|
| 50 |
#filtering options are 'strict','lenient'(default), 'none'
|
| 51 |
if text:
|
| 52 |
+
df = extract_abs.search_term_extraction(disease_or_gard_id, max_results, filtering,
|
| 53 |
+
NER_pipeline, entity_classes,
|
| 54 |
+
extract_diseases,GARD_dict, max_length,
|
| 55 |
+
classify_model_vars)
|
| 56 |
+
st.dataframe(df)
|
| 57 |
+
#st.dataframe(data=None, width=None, height=None)
|