File size: 2,158 Bytes
d8ce0fe
 
 
42ed040
d8ce0fe
 
42ed040
d8ce0fe
 
 
 
 
 
 
 
 
 
42ed040
d8ce0fe
 
b1febfa
42ed040
 
d8ce0fe
42ed040
 
 
 
d7c5a1e
42ed040
d8ce0fe
 
 
 
 
 
 
42ed040
d8ce0fe
 
 
 
 
 
42ed040
d8ce0fe
42ed040
d8ce0fe
42ed040
d8ce0fe
 
 
 
 
b1febfa
42ed040
d8ce0fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d44371
42ed040
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import spaces
import torch

import gradio as gr
from huggingface_hub import snapshot_download
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig


model = None
model_id = "nazimali/Mistral-Nemo-Kurdish-Instruct"

infer_prompt = """Li jêr rêwerzek heye ku peywirek rave dike, bi têketinek ku çarçoveyek din peyda dike ve tê hev kirin. Bersivek ku daxwazê ​​bi guncan temam dike binivîsin.
### Telîmat:
{}
### Têketin:
{}
### Bersiv:
"""

snapshot_download("nazimali/Mistral-Nemo-Kurdish")
snapshot_download(repo_id=model_id, ignore_patterns=["*.gguf"])


@spaces.GPU
def respond(
    message,
    history: list[tuple[str, str]],
):
    global model, tokenizer

    if model is None:
        bnb_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.bfloat16,
        )

        model = AutoModelForCausalLM.from_pretrained(
            model_id,
            quantization_config=bnb_config,
            device_map="auto",
        )
        tokenizer = AutoTokenizer.from_pretrained(model_id)

        model.eval()

    prompt = infer_prompt.format("tu arîkarek alîkar î", message)

    input_ids = tokenizer(
        prompt,
        return_tensors="pt",
        add_special_tokens=False,
        return_token_type_ids=False,
    ).to("cuda")

    with torch.inference_mode():
        generated_ids = model.generate(
            **input_ids,
            max_new_tokens=120,
            do_sample=True,
            temperature=0.7,
            top_p=0.7,
            num_return_sequences=1,
            pad_token_id=tokenizer.pad_token_id,
            eos_token_id=tokenizer.eos_token_id,
        )

    decoded_output = tokenizer.batch_decode(generated_ids)[0]

    return decoded_output.replace(prompt, "").replace("</s>", "")


demo = gr.ChatInterface(respond, type="messages", examples=["سڵاو ئەلیکوم، چۆنیت؟", "Selam alikum, tu çawa yî?", "Peace be upon you, how are you?"], title="Mistral Nemo Kurdish Instruct")


if __name__ == "__main__":
    demo.launch()