Update app.py
Browse files
app.py
CHANGED
@@ -1,62 +1,77 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
"""
|
5 |
-
|
6 |
-
""
|
7 |
-
|
8 |
|
9 |
|
|
|
10 |
def respond(
|
11 |
message,
|
12 |
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
):
|
18 |
-
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
|
30 |
-
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
)
|
60 |
|
61 |
|
62 |
if __name__ == "__main__":
|
|
|
1 |
+
import spaces
|
2 |
+
import torch
|
3 |
+
|
4 |
import gradio as gr
|
5 |
+
from huggingface_hub import snapshot_download
|
6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
7 |
|
8 |
+
|
9 |
+
model = None
|
10 |
+
model_id = "nazimali/Mistral-Nemo-Kurdish-Instruct"
|
11 |
+
|
12 |
+
infer_prompt = """Li jêr rêwerzek heye ku peywirek rave dike, bi têketinek ku çarçoveyek din peyda dike ve tê hev kirin. Bersivek ku daxwazê bi guncan temam dike binivîsin.
|
13 |
+
### Telîmat:
|
14 |
+
{}
|
15 |
+
### Têketin:
|
16 |
+
{}
|
17 |
+
### Bersiv:
|
18 |
"""
|
19 |
+
|
20 |
+
snapshot_download("nazimali/Mistral-Nemo-Kurdish")
|
21 |
+
snapshot_download(repo_id=model_id)
|
22 |
|
23 |
|
24 |
+
@spaces.GPU
|
25 |
def respond(
|
26 |
message,
|
27 |
history: list[tuple[str, str]],
|
|
|
|
|
|
|
|
|
28 |
):
|
29 |
+
global model
|
30 |
|
31 |
+
if model is None:
|
32 |
+
bnb_config = BitsAndBytesConfig(
|
33 |
+
load_in_4bit=True,
|
34 |
+
bnb_4bit_use_double_quant=True,
|
35 |
+
bnb_4bit_quant_type="nf4",
|
36 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
37 |
+
)
|
38 |
|
39 |
+
model = AutoModelForCausalLM.from_pretrained(
|
40 |
+
model_id,
|
41 |
+
quantization_config=bnb_config,
|
42 |
+
device_map="auto",
|
43 |
+
)
|
44 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
45 |
|
46 |
+
model.eval()
|
47 |
|
48 |
+
prompt = infer_prompt.format("tu arîkarek alîkar î", message)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
input_ids = tokenizer(
|
51 |
+
prompt,
|
52 |
+
return_tensors="pt",
|
53 |
+
add_special_tokens=False,
|
54 |
+
return_token_type_ids=False,
|
55 |
+
).to("cuda")
|
56 |
|
57 |
+
with torch.inference_mode():
|
58 |
+
generated_ids = model.generate(
|
59 |
+
**input_ids,
|
60 |
+
max_new_tokens=120,
|
61 |
+
do_sample=True,
|
62 |
+
temperature=0.7,
|
63 |
+
top_p=0.7,
|
64 |
+
num_return_sequences=1,
|
65 |
+
pad_token_id=tokenizer.pad_token_id,
|
66 |
+
eos_token_id=tokenizer.eos_token_id,
|
67 |
+
)
|
68 |
+
|
69 |
+
decoded_output = tokenizer.batch_decode(generated_ids)[0]
|
70 |
+
|
71 |
+
return decoded_output.replace(prompt, "").replace("</s>", "")
|
72 |
+
|
73 |
+
|
74 |
+
demo = gr.ChatInterface(respond, examples=["سڵاو ئەلیکوم، چۆنیت؟", "Selam alikum, tu çawa yî?"], title="Mistral Nemo Kurdish Instruct")
|
75 |
|
76 |
|
77 |
if __name__ == "__main__":
|