|
# pytorch-caney |
|
|
|
Python package for lots of Pytorch tools. |
|
|
|
[](https://zenodo.org/badge/latestdoi/472450059) |
|
 |
|
 |
|
 |
|
[](https://github.com/psf/black) |
|
[](https://coveralls.io/github/nasa-nccs-hpda/pytorch-caney?branch=main) |
|
|
|
## Documentation |
|
|
|
- Latest: https://nasa-nccs-hpda.github.io/pytorch-caney/latest |
|
|
|
## Objectives |
|
|
|
- Library to process remote sensing imagery using GPU and CPU parallelization. |
|
- Machine Learning and Deep Learning image classification and regression. |
|
- Agnostic array and vector-like data structures. |
|
- User interface environments via Notebooks for easy to use AI/ML projects. |
|
- Example notebooks for quick AI/ML start with your own data. |
|
|
|
## Installation |
|
|
|
The following library is intended to be used to accelerate the development of data science products |
|
for remote sensing satellite imagery, or any other applications. pytorch-caney can be installed |
|
by itself, but instructions for installing the full environments are listed under the requirements |
|
directory so projects, examples, and notebooks can be run. |
|
|
|
Note: PIP installations do not include CUDA libraries for GPU support. Make sure NVIDIA libraries |
|
are installed locally in the system if not using conda/mamba. |
|
|
|
```bash |
|
module load singularity # if a module needs to be loaded |
|
singularity build --sandbox pytorch-caney-container docker://nasanccs/pytorch-caney:latest |
|
``` |
|
|
|
## Why Caney? |
|
|
|
"Caney" means longhouse in Taíno. |
|
|
|
## Contributors |
|
|
|
- Jordan Alexis Caraballo-Vega, [email protected] |
|
- Caleb Spradlin, [email protected] |
|
|
|
## Contributing |
|
|
|
Please see our [guide for contributing to pytorch-caney](CONTRIBUTING.md). |
|
|
|
## SatVision |
|
|
|
| name | pretrain | resolution | #params | |
|
| :---: | :---: | :---: | :---: | |
|
| SatVision-B | MODIS-1.9-M | 192x192 | 84.5M | |
|
|
|
## SatVision Datasets |
|
|
|
| name | bands | resolution | #chips | |
|
| :---: | :---: | :---: | :---: | |
|
| MODIS-Small | 7 | 128x128 | 1,994,131 | |
|
|
|
## MODIS Surface Reflectance (MOD09GA) Band Details |
|
|
|
| Band Name | Bandwidth | |
|
| :------------: | :-----------: | |
|
| sur_refl_b01_1 | 0.620 - 0.670 | |
|
| sur_refl_b02_1 | 0.841 - 0.876 | |
|
| sur_refl_b03_1 | 0.459 - 0.479 | |
|
| sur_refl_b04_1 | 0.545 - 0.565 | |
|
| sur_refl_b05_1 | 1.230 - 1.250 | |
|
| sur_refl_b06_1 | 1.628 - 1.652 | |
|
| sur_refl_b07_1 | 2.105 - 2.155 | |
|
|
|
## Pre-training with Masked Image Modeling |
|
|
|
To pre-train the swinv2 base model with masked image modeling pre-training, run: |
|
```bash |
|
torchrun --nproc_per_node <NGPUS> pytorch-caney/pytorch_caney/pipelines/pretraining/mim.py --cfg <config-file> --dataset <dataset-name> --data-paths <path-to-data-subfolder-1> --batch-size <batch-size> --output <output-dir> --enable-amp |
|
``` |
|
|
|
For example to run on a compute node with 4 GPUs and a batch size of 128 on the MODIS SatVision pre-training dataset with a base swinv2 model, run: |
|
|
|
```bash |
|
singularity shell --nv -B <mounts> /path/to/container/pytorch-caney-container |
|
Singularity> export PYTHONPATH=$PWD:$PWD/pytorch-caney |
|
Singularity> torchrun --nproc_per_node 4 pytorch-caney/pytorch_caney/pipelines/pretraining/mim.py --cfg pytorch-caney/examples/satvision/mim_pretrain_swinv2_satvision_base_192_window12_800ep.yaml --dataset MODIS --data-paths /explore/nobackup/projects/ilab/data/satvision/pretraining/training_* --batch-size 128 --output . --enable-amp |
|
``` |
|
|
|
This example script runs the exact configuration used to make the SatVision-base model pre-training with MiM and the MODIS pre-training dataset. |
|
```bash |
|
singularity shell --nv -B <mounts> /path/to/container/pytorch-caney-container |
|
Singularity> cd pytorch-caney/examples/satvision |
|
Singularity> ./run_satvision_pretrain.sh |
|
``` |
|
|
|
## Fine-tuning Satvision-base |
|
To fine-tune the satvision-base pre-trained model, run: |
|
```bash |
|
torchrun --nproc_per_node <NGPUS> pytorch-caney/pytorch_caney/pipelines/finetuning/finetune.py --cfg <config-file> --pretrained <path-to-pretrained> --dataset <dataset-name> --data-paths <path-to-data-subfolder-1> --batch-size <batch-size> --output <output-dir> --enable-amp |
|
``` |
|
|
|
See example config files pytorch-caney/examples/satvision/finetune_satvision_base_*.yaml to see how to structure your config file for fine-tuning. |
|
|
|
|
|
## Testing |
|
For unittests, run this bash command to run linting and unit test runs. This will execute unit tests and linting in a temporary venv environment only used for testing. |
|
```bash |
|
git clone [email protected]:nasa-nccs-hpda/pytorch-caney.git |
|
cd pytorch-caney; bash test.sh |
|
``` |
|
or run unit tests directly with container or anaconda env |
|
|
|
```bash |
|
git clone [email protected]:nasa-nccs-hpda/pytorch-caney.git |
|
singularity build --sandbox pytorch-caney-container docker://nasanccs/pytorch-caney:latest |
|
singularity shell --nv -B <mounts> /path/to/container/pytorch-caney-container |
|
cd pytorch-caney; python -m unittest discover pytorch_caney/tests |
|
``` |
|
|
|
```bash |
|
git clone [email protected]:nasa-nccs-hpda/pytorch-caney.git |
|
cd pytorch-caney; conda env create -f requirements/environment_gpu.yml; |
|
conda activate pytorch-caney |
|
python -m unittest discover pytorch_caney/tests |
|
``` |
|
## References |
|
|
|
- [Pytorch Lightning](https://github.com/Lightning-AI/lightning) |
|
- [Swin Transformer](https://github.com/microsoft/Swin-Transformer) |
|
- [SimMIM](https://github.com/microsoft/SimMIM) |
|
|