Spaces:
Runtime error
Runtime error
"""Neurosymbolic reasoning implementation.""" | |
import logging | |
from typing import Dict, Any, List, Tuple | |
import json | |
from .base import ReasoningStrategy | |
class NeurosymbolicReasoning(ReasoningStrategy): | |
"""Implements neurosymbolic reasoning combining neural and symbolic approaches.""" | |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
try: | |
# Neural processing | |
neural_features = await self._neural_processing(query, context) | |
# Symbolic reasoning | |
symbolic_rules = await self._symbolic_reasoning(neural_features, context) | |
# Integration | |
integrated = await self._neurosymbolic_integration(neural_features, symbolic_rules, context) | |
# Final inference | |
conclusion = await self._final_inference(integrated, context) | |
return { | |
"success": True, | |
"answer": conclusion["answer"], | |
"neural_features": neural_features, | |
"symbolic_rules": symbolic_rules, | |
"integrated_reasoning": integrated, | |
"confidence": conclusion["confidence"], | |
"explanation": conclusion["explanation"] | |
} | |
except Exception as e: | |
return {"success": False, "error": str(e)} | |
async def _neural_processing(self, query: str, context: Dict[str, Any]) -> List[Dict[str, Any]]: | |
prompt = f""" | |
Extract neural features from query: | |
Query: {query} | |
Context: {json.dumps(context)} | |
For each feature: | |
1. [Type]: Feature type | |
2. [Value]: Extracted value | |
3. [Confidence]: Extraction confidence | |
4. [Relations]: Related concepts | |
Format as: | |
[F1] | |
Type: ... | |
Value: ... | |
Confidence: ... | |
Relations: ... | |
""" | |
response = await context["groq_api"].predict(prompt) | |
return self._parse_features(response["answer"]) | |
async def _symbolic_reasoning(self, features: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]: | |
prompt = f""" | |
Generate symbolic rules from features: | |
Features: {json.dumps(features)} | |
Context: {json.dumps(context)} | |
For each rule: | |
1. [Condition]: Rule condition | |
2. [Implication]: What it implies | |
3. [Certainty]: Rule certainty | |
4. [Source]: Derivation source | |
Format as: | |
[R1] | |
Condition: ... | |
Implication: ... | |
Certainty: ... | |
Source: ... | |
""" | |
response = await context["groq_api"].predict(prompt) | |
return self._parse_rules(response["answer"]) | |
async def _neurosymbolic_integration(self, features: List[Dict[str, Any]], rules: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]: | |
prompt = f""" | |
Integrate neural and symbolic components: | |
Features: {json.dumps(features)} | |
Rules: {json.dumps(rules)} | |
Context: {json.dumps(context)} | |
For each integration: | |
1. [Components]: What is being integrated | |
2. [Method]: How they are combined | |
3. [Result]: Integration outcome | |
4. [Confidence]: Integration confidence | |
Format as: | |
[I1] | |
Components: ... | |
Method: ... | |
Result: ... | |
Confidence: ... | |
""" | |
response = await context["groq_api"].predict(prompt) | |
return self._parse_integration(response["answer"]) | |
async def _final_inference(self, integrated: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, Any]: | |
prompt = f""" | |
Draw final conclusions from integrated reasoning: | |
Integrated: {json.dumps(integrated)} | |
Context: {json.dumps(context)} | |
Provide: | |
1. Final answer/conclusion | |
2. Confidence level (0-1) | |
3. Explanation of reasoning | |
4. Key factors considered | |
""" | |
response = await context["groq_api"].predict(prompt) | |
return self._parse_conclusion(response["answer"]) | |
def _parse_features(self, response: str) -> List[Dict[str, Any]]: | |
"""Parse neural features from response.""" | |
features = [] | |
current = None | |
for line in response.split('\n'): | |
line = line.strip() | |
if not line: | |
continue | |
if line.startswith('[F'): | |
if current: | |
features.append(current) | |
current = { | |
"type": "", | |
"value": "", | |
"confidence": 0.0, | |
"relations": [] | |
} | |
elif current: | |
if line.startswith('Type:'): | |
current["type"] = line[5:].strip() | |
elif line.startswith('Value:'): | |
current["value"] = line[6:].strip() | |
elif line.startswith('Confidence:'): | |
try: | |
current["confidence"] = float(line[11:].strip()) | |
except: | |
pass | |
elif line.startswith('Relations:'): | |
current["relations"] = [r.strip() for r in line[10:].split(',')] | |
if current: | |
features.append(current) | |
return features | |
def _parse_rules(self, response: str) -> List[Dict[str, Any]]: | |
"""Parse symbolic rules from response.""" | |
rules = [] | |
current = None | |
for line in response.split('\n'): | |
line = line.strip() | |
if not line: | |
continue | |
if line.startswith('[R'): | |
if current: | |
rules.append(current) | |
current = { | |
"condition": "", | |
"implication": "", | |
"certainty": 0.0, | |
"source": "" | |
} | |
elif current: | |
if line.startswith('Condition:'): | |
current["condition"] = line[10:].strip() | |
elif line.startswith('Implication:'): | |
current["implication"] = line[12:].strip() | |
elif line.startswith('Certainty:'): | |
try: | |
current["certainty"] = float(line[10:].strip()) | |
except: | |
pass | |
elif line.startswith('Source:'): | |
current["source"] = line[7:].strip() | |
if current: | |
rules.append(current) | |
return rules | |
def _parse_integration(self, response: str) -> List[Dict[str, Any]]: | |
"""Parse integration results from response.""" | |
integrations = [] | |
current = None | |
for line in response.split('\n'): | |
line = line.strip() | |
if not line: | |
continue | |
if line.startswith('[I'): | |
if current: | |
integrations.append(current) | |
current = { | |
"components": "", | |
"method": "", | |
"result": "", | |
"confidence": 0.0 | |
} | |
elif current: | |
if line.startswith('Components:'): | |
current["components"] = line[11:].strip() | |
elif line.startswith('Method:'): | |
current["method"] = line[7:].strip() | |
elif line.startswith('Result:'): | |
current["result"] = line[7:].strip() | |
elif line.startswith('Confidence:'): | |
try: | |
current["confidence"] = float(line[11:].strip()) | |
except: | |
pass | |
if current: | |
integrations.append(current) | |
return integrations | |
def _parse_conclusion(self, response: str) -> Dict[str, Any]: | |
"""Parse final conclusion from response.""" | |
conclusion = { | |
"answer": "", | |
"confidence": 0.0, | |
"explanation": "", | |
"factors": [] | |
} | |
mode = None | |
for line in response.split('\n'): | |
line = line.strip() | |
if not line: | |
continue | |
if line.startswith('Answer:'): | |
conclusion["answer"] = line[7:].strip() | |
elif line.startswith('Confidence:'): | |
try: | |
conclusion["confidence"] = float(line[11:].strip()) | |
except: | |
conclusion["confidence"] = 0.5 | |
elif line.startswith('Explanation:'): | |
conclusion["explanation"] = line[12:].strip() | |
elif line.startswith('Factors:'): | |
mode = "factors" | |
elif mode == "factors" and line.startswith('- '): | |
conclusion["factors"].append(line[2:].strip()) | |
return conclusion | |