nananie143's picture
Upload folder using huggingface_hub
dcb2a99 verified
raw
history blame
10.3 kB
"""Multi-modal reasoning implementation."""
import logging
from typing import Dict, Any, List
import json
from .base import ReasoningStrategy
class MultiModalReasoning(ReasoningStrategy):
"""Implements multi-modal reasoning across different types of information."""
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
try:
# Process different modalities
modalities = await self._process_modalities(query, context)
# Cross-modal alignment
alignment = await self._cross_modal_alignment(modalities, context)
# Integrated analysis
integration = await self._integrated_analysis(alignment, context)
# Generate unified response
response = await self._generate_response(integration, context)
return {
"success": True,
"answer": response["conclusion"],
"modalities": modalities,
"alignment": alignment,
"integration": integration,
"confidence": response["confidence"]
}
except Exception as e:
logging.error(f"Error in multi-modal reasoning: {str(e)}")
return {"success": False, "error": str(e)}
async def _process_modalities(self, query: str, context: Dict[str, Any]) -> Dict[str, List[Dict[str, Any]]]:
"""Process query across different modalities."""
prompt = f"""
Process query across modalities:
Query: {query}
Context: {json.dumps(context)}
For each modality extract:
1. [Type]: Modality type
2. [Content]: Relevant content
3. [Features]: Key features
4. [Quality]: Content quality
Format as:
[M1]
Type: ...
Content: ...
Features: ...
Quality: ...
"""
response = await context["groq_api"].predict(prompt)
return self._parse_modalities(response["answer"])
async def _cross_modal_alignment(self, modalities: Dict[str, List[Dict[str, Any]]], context: Dict[str, Any]) -> List[Dict[str, Any]]:
"""Align information across different modalities."""
try:
# Extract modality types
modal_types = list(modalities.keys())
# Initialize alignment results
alignments = []
# Process each modality pair
for i in range(len(modal_types)):
for j in range(i + 1, len(modal_types)):
type1, type2 = modal_types[i], modal_types[j]
# Get items from each modality
items1 = modalities[type1]
items2 = modalities[type2]
# Find alignments between items
for item1 in items1:
for item2 in items2:
similarity = self._calculate_similarity(item1, item2)
if similarity > 0.5: # Threshold for alignment
alignments.append({
"type1": type1,
"type2": type2,
"item1": item1,
"item2": item2,
"similarity": similarity
})
# Sort alignments by similarity
alignments.sort(key=lambda x: x["similarity"], reverse=True)
return alignments
except Exception as e:
logging.error(f"Error in cross-modal alignment: {str(e)}")
return []
def _calculate_similarity(self, item1: Dict[str, Any], item2: Dict[str, Any]) -> float:
"""Calculate similarity between two items from different modalities."""
try:
# Extract content from items
content1 = str(item1.get("content", ""))
content2 = str(item2.get("content", ""))
# Calculate basic similarity (can be enhanced with more sophisticated methods)
common_words = set(content1.lower().split()) & set(content2.lower().split())
total_words = set(content1.lower().split()) | set(content2.lower().split())
if not total_words:
return 0.0
return len(common_words) / len(total_words)
except Exception as e:
logging.error(f"Error calculating similarity: {str(e)}")
return 0.0
async def _integrated_analysis(self, alignment: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]:
prompt = f"""
Perform integrated multi-modal analysis:
Alignment: {json.dumps(alignment)}
Context: {json.dumps(context)}
For each insight:
1. [Insight]: Key finding
2. [Sources]: Contributing modalities
3. [Support]: Supporting evidence
4. [Confidence]: Confidence level
Format as:
[I1]
Insight: ...
Sources: ...
Support: ...
Confidence: ...
"""
response = await context["groq_api"].predict(prompt)
return self._parse_integration(response["answer"])
async def _generate_response(self, integration: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, Any]:
prompt = f"""
Generate unified multi-modal response:
Integration: {json.dumps(integration)}
Context: {json.dumps(context)}
Provide:
1. Main conclusion
2. Modal contributions
3. Integration benefits
4. Confidence level (0-1)
"""
response = await context["groq_api"].predict(prompt)
return self._parse_response(response["answer"])
def _parse_modalities(self, response: str) -> Dict[str, List[Dict[str, Any]]]:
"""Parse modalities from response."""
modalities = {}
current_modality = None
for line in response.split('\n'):
line = line.strip()
if not line:
continue
if line.startswith('[M'):
if current_modality:
if current_modality["type"] not in modalities:
modalities[current_modality["type"]] = []
modalities[current_modality["type"]].append(current_modality)
current_modality = {
"type": "",
"content": "",
"features": "",
"quality": ""
}
elif current_modality:
if line.startswith('Type:'):
current_modality["type"] = line[5:].strip()
elif line.startswith('Content:'):
current_modality["content"] = line[8:].strip()
elif line.startswith('Features:'):
current_modality["features"] = line[9:].strip()
elif line.startswith('Quality:'):
current_modality["quality"] = line[8:].strip()
if current_modality:
if current_modality["type"] not in modalities:
modalities[current_modality["type"]] = []
modalities[current_modality["type"]].append(current_modality)
return modalities
def _parse_integration(self, response: str) -> List[Dict[str, Any]]:
"""Parse integration from response."""
integration = []
current_insight = None
for line in response.split('\n'):
line = line.strip()
if not line:
continue
if line.startswith('[I'):
if current_insight:
integration.append(current_insight)
current_insight = {
"insight": "",
"sources": "",
"support": "",
"confidence": 0.0
}
elif current_insight:
if line.startswith('Insight:'):
current_insight["insight"] = line[8:].strip()
elif line.startswith('Sources:'):
current_insight["sources"] = line[8:].strip()
elif line.startswith('Support:'):
current_insight["support"] = line[8:].strip()
elif line.startswith('Confidence:'):
try:
current_insight["confidence"] = float(line[11:].strip())
except:
pass
if current_insight:
integration.append(current_insight)
return integration
def _parse_response(self, response: str) -> Dict[str, Any]:
"""Parse response from response."""
response_dict = {
"conclusion": "",
"modal_contributions": [],
"integration_benefits": [],
"confidence": 0.0
}
mode = None
for line in response.split('\n'):
line = line.strip()
if not line:
continue
if line.startswith('Conclusion:'):
response_dict["conclusion"] = line[11:].strip()
elif line.startswith('Modal Contributions:'):
mode = "modal"
elif line.startswith('Integration Benefits:'):
mode = "integration"
elif line.startswith('Confidence:'):
try:
response_dict["confidence"] = float(line[11:].strip())
except:
response_dict["confidence"] = 0.5
mode = None
elif mode == "modal" and line.startswith('- '):
response_dict["modal_contributions"].append(line[2:].strip())
elif mode == "integration" and line.startswith('- '):
response_dict["integration_benefits"].append(line[2:].strip())
return response_dict