Spaces:
Runtime error
Runtime error
"""Advanced monetization strategies for venture optimization.""" | |
import logging | |
from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple | |
import json | |
from dataclasses import dataclass, field | |
from enum import Enum | |
from datetime import datetime | |
import numpy as np | |
from collections import defaultdict | |
class MonetizationModel: | |
"""Monetization model configuration.""" | |
name: str | |
type: str | |
pricing_tiers: List[Dict[str, Any]] | |
features: List[str] | |
constraints: List[str] | |
metrics: Dict[str, float] | |
class RevenueStream: | |
"""Revenue stream configuration.""" | |
name: str | |
type: str | |
volume: float | |
unit_economics: Dict[str, float] | |
growth_rate: float | |
churn_rate: float | |
class MonetizationOptimizer: | |
""" | |
Advanced monetization optimization that: | |
1. Designs pricing models | |
2. Optimizes revenue streams | |
3. Maximizes customer value | |
4. Reduces churn | |
5. Increases lifetime value | |
""" | |
def __init__(self): | |
self.models: Dict[str, MonetizationModel] = {} | |
self.streams: Dict[str, RevenueStream] = {} | |
async def optimize_monetization(self, | |
venture_type: str, | |
context: Dict[str, Any]) -> Dict[str, Any]: | |
"""Optimize monetization strategy.""" | |
try: | |
# Design models | |
models = await self._design_models(venture_type, context) | |
# Optimize pricing | |
pricing = await self._optimize_pricing(models, context) | |
# Revenue optimization | |
revenue = await self._optimize_revenue(pricing, context) | |
# Value optimization | |
value = await self._optimize_value(revenue, context) | |
# Performance projections | |
projections = await self._project_performance(value, context) | |
return { | |
"success": projections["annual_revenue"] >= 1_000_000, | |
"models": models, | |
"pricing": pricing, | |
"revenue": revenue, | |
"value": value, | |
"projections": projections | |
} | |
except Exception as e: | |
logging.error(f"Error in monetization optimization: {str(e)}") | |
return {"success": False, "error": str(e)} | |
async def _design_models(self, | |
venture_type: str, | |
context: Dict[str, Any]) -> Dict[str, Any]: | |
"""Design monetization models.""" | |
prompt = f""" | |
Design monetization models: | |
Venture: {venture_type} | |
Context: {json.dumps(context)} | |
Design models for: | |
1. Subscription tiers | |
2. Usage-based pricing | |
3. Hybrid models | |
4. Enterprise pricing | |
5. Marketplace fees | |
Format as: | |
[Model1] | |
Name: ... | |
Type: ... | |
Tiers: ... | |
Features: ... | |
Constraints: ... | |
""" | |
response = await context["groq_api"].predict(prompt) | |
return self._parse_model_design(response["answer"]) | |
async def _optimize_pricing(self, | |
models: Dict[str, Any], | |
context: Dict[str, Any]) -> Dict[str, Any]: | |
"""Optimize pricing strategy.""" | |
prompt = f""" | |
Optimize pricing strategy: | |
Models: {json.dumps(models)} | |
Context: {json.dumps(context)} | |
Optimize for: | |
1. Market positioning | |
2. Value perception | |
3. Competitive dynamics | |
4. Customer segments | |
5. Growth potential | |
Format as: | |
[Strategy1] | |
Model: ... | |
Positioning: ... | |
Value_Props: ... | |
Segments: ... | |
Growth: ... | |
""" | |
response = await context["groq_api"].predict(prompt) | |
return self._parse_pricing_strategy(response["answer"]) | |
async def _optimize_revenue(self, | |
pricing: Dict[str, Any], | |
context: Dict[str, Any]) -> Dict[str, Any]: | |
"""Optimize revenue streams.""" | |
prompt = f""" | |
Optimize revenue streams: | |
Pricing: {json.dumps(pricing)} | |
Context: {json.dumps(context)} | |
Optimize for: | |
1. Revenue mix | |
2. Growth drivers | |
3. Retention factors | |
4. Expansion potential | |
5. Risk mitigation | |
Format as: | |
[Stream1] | |
Type: ... | |
Drivers: ... | |
Retention: ... | |
Expansion: ... | |
Risks: ... | |
""" | |
response = await context["groq_api"].predict(prompt) | |
return self._parse_revenue_optimization(response["answer"]) | |
async def _optimize_value(self, | |
revenue: Dict[str, Any], | |
context: Dict[str, Any]) -> Dict[str, Any]: | |
"""Optimize customer value.""" | |
prompt = f""" | |
Optimize customer value: | |
Revenue: {json.dumps(revenue)} | |
Context: {json.dumps(context)} | |
Optimize for: | |
1. Acquisition cost | |
2. Lifetime value | |
3. Churn reduction | |
4. Upsell potential | |
5. Network effects | |
Format as: | |
[Value1] | |
Metric: ... | |
Strategy: ... | |
Potential: ... | |
Actions: ... | |
Timeline: ... | |
""" | |
response = await context["groq_api"].predict(prompt) | |
return self._parse_value_optimization(response["answer"]) | |
async def _project_performance(self, | |
value: Dict[str, Any], | |
context: Dict[str, Any]) -> Dict[str, Any]: | |
"""Project monetization performance.""" | |
prompt = f""" | |
Project performance: | |
Value: {json.dumps(value)} | |
Context: {json.dumps(context)} | |
Project: | |
1. Revenue growth | |
2. Customer metrics | |
3. Unit economics | |
4. Profitability | |
5. Scale effects | |
Format as: | |
[Projections] | |
Revenue: ... | |
Metrics: ... | |
Economics: ... | |
Profit: ... | |
Scale: ... | |
""" | |
response = await context["groq_api"].predict(prompt) | |
return self._parse_performance_projections(response["answer"]) | |
def _calculate_revenue_potential(self, model: MonetizationModel) -> float: | |
"""Calculate revenue potential for model.""" | |
base_potential = sum( | |
tier.get("price", 0) * tier.get("volume", 0) | |
for tier in model.pricing_tiers | |
) | |
growth_factor = 1.0 + (model.metrics.get("growth_rate", 0) / 100) | |
retention_factor = 1.0 - (model.metrics.get("churn_rate", 0) / 100) | |
return base_potential * growth_factor * retention_factor | |
def _calculate_customer_ltv(self, stream: RevenueStream) -> float: | |
"""Calculate customer lifetime value.""" | |
monthly_revenue = stream.volume * stream.unit_economics.get("arpu", 0) | |
churn_rate = stream.churn_rate / 100 | |
discount_rate = 0.1 # 10% annual discount rate | |
if churn_rate > 0: | |
ltv = monthly_revenue / churn_rate | |
else: | |
ltv = monthly_revenue * 12 # Assume 1 year if no churn | |
return ltv / (1 + discount_rate) | |
def get_monetization_metrics(self) -> Dict[str, Any]: | |
"""Get comprehensive monetization metrics.""" | |
return { | |
"model_metrics": { | |
model.name: { | |
"revenue_potential": self._calculate_revenue_potential(model), | |
"tier_count": len(model.pricing_tiers), | |
"feature_count": len(model.features), | |
"constraint_count": len(model.constraints) | |
} | |
for model in self.models.values() | |
}, | |
"stream_metrics": { | |
stream.name: { | |
"monthly_revenue": stream.volume * stream.unit_economics.get("arpu", 0), | |
"ltv": self._calculate_customer_ltv(stream), | |
"growth_rate": stream.growth_rate, | |
"churn_rate": stream.churn_rate | |
} | |
for stream in self.streams.values() | |
}, | |
"aggregate_metrics": { | |
"total_revenue_potential": sum( | |
self._calculate_revenue_potential(model) | |
for model in self.models.values() | |
), | |
"average_ltv": np.mean([ | |
self._calculate_customer_ltv(stream) | |
for stream in self.streams.values() | |
]) if self.streams else 0, | |
"weighted_growth_rate": np.average( | |
[stream.growth_rate for stream in self.streams.values()], | |
weights=[stream.volume for stream in self.streams.values()] | |
) if self.streams else 0 | |
} | |
} | |