Spaces:
Runtime error
Runtime error
"""Advanced market analysis tools for venture strategies.""" | |
import logging | |
from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple | |
import json | |
from dataclasses import dataclass, field | |
from enum import Enum | |
from datetime import datetime | |
import numpy as np | |
from collections import defaultdict | |
class MarketSegment: | |
"""Market segment analysis.""" | |
size: float | |
growth_rate: float | |
cagr: float | |
competition: List[Dict[str, Any]] | |
barriers: List[str] | |
opportunities: List[str] | |
risks: List[str] | |
class CompetitorAnalysis: | |
"""Competitor analysis.""" | |
name: str | |
market_share: float | |
strengths: List[str] | |
weaknesses: List[str] | |
strategy: str | |
revenue: Optional[float] | |
valuation: Optional[float] | |
class MarketTrend: | |
"""Market trend analysis.""" | |
name: str | |
impact: float | |
timeline: str | |
adoption_rate: float | |
market_potential: float | |
risk_level: float | |
class MarketAnalyzer: | |
""" | |
Advanced market analysis toolkit that: | |
1. Analyzes market segments | |
2. Tracks competitors | |
3. Identifies trends | |
4. Predicts opportunities | |
5. Assesses risks | |
""" | |
def __init__(self): | |
self.segments: Dict[str, MarketSegment] = {} | |
self.competitors: Dict[str, CompetitorAnalysis] = {} | |
self.trends: List[MarketTrend] = [] | |
async def analyze_market(self, | |
segment: str, | |
context: Dict[str, Any]) -> Dict[str, Any]: | |
"""Perform comprehensive market analysis.""" | |
try: | |
# Segment analysis | |
segment_analysis = await self._analyze_segment(segment, context) | |
# Competitor analysis | |
competitor_analysis = await self._analyze_competitors(segment, context) | |
# Trend analysis | |
trend_analysis = await self._analyze_trends(segment, context) | |
# Opportunity analysis | |
opportunity_analysis = await self._analyze_opportunities( | |
segment_analysis, competitor_analysis, trend_analysis, context) | |
# Risk analysis | |
risk_analysis = await self._analyze_risks( | |
segment_analysis, competitor_analysis, trend_analysis, context) | |
return { | |
"success": True, | |
"segment_analysis": segment_analysis, | |
"competitor_analysis": competitor_analysis, | |
"trend_analysis": trend_analysis, | |
"opportunity_analysis": opportunity_analysis, | |
"risk_analysis": risk_analysis, | |
"metrics": { | |
"market_score": self._calculate_market_score(segment_analysis), | |
"opportunity_score": self._calculate_opportunity_score(opportunity_analysis), | |
"risk_score": self._calculate_risk_score(risk_analysis) | |
} | |
} | |
except Exception as e: | |
logging.error(f"Error in market analysis: {str(e)}") | |
return {"success": False, "error": str(e)} | |
async def _analyze_segment(self, | |
segment: str, | |
context: Dict[str, Any]) -> Dict[str, Any]: | |
"""Analyze market segment.""" | |
prompt = f""" | |
Analyze market segment: | |
Segment: {segment} | |
Context: {json.dumps(context)} | |
Analyze: | |
1. Market size and growth | |
2. Customer segments | |
3. Value chain | |
4. Entry barriers | |
5. Competitive dynamics | |
Format as: | |
[Analysis] | |
Size: ... | |
Growth: ... | |
Segments: ... | |
Value_Chain: ... | |
Barriers: ... | |
""" | |
response = await context["groq_api"].predict(prompt) | |
return self._parse_segment_analysis(response["answer"]) | |
async def _analyze_competitors(self, | |
segment: str, | |
context: Dict[str, Any]) -> Dict[str, Any]: | |
"""Analyze competitors in segment.""" | |
prompt = f""" | |
Analyze competitors: | |
Segment: {segment} | |
Context: {json.dumps(context)} | |
For each competitor analyze: | |
1. Market share | |
2. Business model | |
3. Strengths/weaknesses | |
4. Strategy | |
5. Performance metrics | |
Format as: | |
[Competitor1] | |
Share: ... | |
Model: ... | |
Strengths: ... | |
Weaknesses: ... | |
Strategy: ... | |
Metrics: ... | |
""" | |
response = await context["groq_api"].predict(prompt) | |
return self._parse_competitor_analysis(response["answer"]) | |
async def _analyze_trends(self, | |
segment: str, | |
context: Dict[str, Any]) -> Dict[str, Any]: | |
"""Analyze market trends.""" | |
prompt = f""" | |
Analyze market trends: | |
Segment: {segment} | |
Context: {json.dumps(context)} | |
Analyze trends in: | |
1. Technology | |
2. Customer behavior | |
3. Business models | |
4. Regulation | |
5. Market dynamics | |
Format as: | |
[Trend1] | |
Type: ... | |
Impact: ... | |
Timeline: ... | |
Adoption: ... | |
Potential: ... | |
""" | |
response = await context["groq_api"].predict(prompt) | |
return self._parse_trend_analysis(response["answer"]) | |
async def _analyze_opportunities(self, | |
segment_analysis: Dict[str, Any], | |
competitor_analysis: Dict[str, Any], | |
trend_analysis: Dict[str, Any], | |
context: Dict[str, Any]) -> Dict[str, Any]: | |
"""Analyze market opportunities.""" | |
prompt = f""" | |
Analyze market opportunities: | |
Segment: {json.dumps(segment_analysis)} | |
Competitors: {json.dumps(competitor_analysis)} | |
Trends: {json.dumps(trend_analysis)} | |
Context: {json.dumps(context)} | |
Identify opportunities in: | |
1. Unmet needs | |
2. Market gaps | |
3. Innovation potential | |
4. Scaling potential | |
5. Value creation | |
Format as: | |
[Opportunity1] | |
Type: ... | |
Description: ... | |
Potential: ... | |
Requirements: ... | |
Timeline: ... | |
""" | |
response = await context["groq_api"].predict(prompt) | |
return self._parse_opportunity_analysis(response["answer"]) | |
async def _analyze_risks(self, | |
segment_analysis: Dict[str, Any], | |
competitor_analysis: Dict[str, Any], | |
trend_analysis: Dict[str, Any], | |
context: Dict[str, Any]) -> Dict[str, Any]: | |
"""Analyze market risks.""" | |
prompt = f""" | |
Analyze market risks: | |
Segment: {json.dumps(segment_analysis)} | |
Competitors: {json.dumps(competitor_analysis)} | |
Trends: {json.dumps(trend_analysis)} | |
Context: {json.dumps(context)} | |
Analyze risks in: | |
1. Market dynamics | |
2. Competition | |
3. Technology | |
4. Regulation | |
5. Execution | |
Format as: | |
[Risk1] | |
Type: ... | |
Description: ... | |
Impact: ... | |
Probability: ... | |
Mitigation: ... | |
""" | |
response = await context["groq_api"].predict(prompt) | |
return self._parse_risk_analysis(response["answer"]) | |
def _calculate_market_score(self, analysis: Dict[str, Any]) -> float: | |
"""Calculate market attractiveness score.""" | |
weights = { | |
"size": 0.3, | |
"growth": 0.3, | |
"competition": 0.2, | |
"barriers": 0.1, | |
"dynamics": 0.1 | |
} | |
scores = { | |
"size": min(analysis.get("size", 0) / 1e9, 1.0), # Normalize to 1B | |
"growth": min(analysis.get("growth", 0) / 30, 1.0), # Normalize to 30% | |
"competition": 1.0 - min(len(analysis.get("competitors", [])) / 10, 1.0), | |
"barriers": 1.0 - min(len(analysis.get("barriers", [])) / 5, 1.0), | |
"dynamics": analysis.get("dynamics_score", 0.5) | |
} | |
return sum(weights[k] * scores[k] for k in weights) | |
def _calculate_opportunity_score(self, analysis: Dict[str, Any]) -> float: | |
"""Calculate opportunity attractiveness score.""" | |
weights = { | |
"market_potential": 0.3, | |
"innovation_potential": 0.2, | |
"execution_feasibility": 0.2, | |
"competitive_advantage": 0.2, | |
"timing": 0.1 | |
} | |
scores = { | |
"market_potential": analysis.get("market_potential", 0.5), | |
"innovation_potential": analysis.get("innovation_potential", 0.5), | |
"execution_feasibility": analysis.get("execution_feasibility", 0.5), | |
"competitive_advantage": analysis.get("competitive_advantage", 0.5), | |
"timing": analysis.get("timing_score", 0.5) | |
} | |
return sum(weights[k] * scores[k] for k in weights) | |
def _calculate_risk_score(self, analysis: Dict[str, Any]) -> float: | |
"""Calculate risk level score.""" | |
weights = { | |
"market_risk": 0.2, | |
"competition_risk": 0.2, | |
"technology_risk": 0.2, | |
"regulatory_risk": 0.2, | |
"execution_risk": 0.2 | |
} | |
scores = { | |
"market_risk": analysis.get("market_risk", 0.5), | |
"competition_risk": analysis.get("competition_risk", 0.5), | |
"technology_risk": analysis.get("technology_risk", 0.5), | |
"regulatory_risk": analysis.get("regulatory_risk", 0.5), | |
"execution_risk": analysis.get("execution_risk", 0.5) | |
} | |
return sum(weights[k] * scores[k] for k in weights) | |
def get_market_insights(self) -> Dict[str, Any]: | |
"""Get comprehensive market insights.""" | |
return { | |
"segment_insights": { | |
segment: { | |
"size": s.size, | |
"growth_rate": s.growth_rate, | |
"cagr": s.cagr, | |
"opportunity_score": self._calculate_market_score({ | |
"size": s.size, | |
"growth": s.growth_rate, | |
"competitors": s.competition, | |
"barriers": s.barriers | |
}) | |
} | |
for segment, s in self.segments.items() | |
}, | |
"competitor_insights": { | |
competitor: { | |
"market_share": c.market_share, | |
"strength_score": len(c.strengths) / (len(c.strengths) + len(c.weaknesses)), | |
"revenue": c.revenue, | |
"valuation": c.valuation | |
} | |
for competitor, c in self.competitors.items() | |
}, | |
"trend_insights": [ | |
{ | |
"name": t.name, | |
"impact": t.impact, | |
"potential": t.market_potential, | |
"risk": t.risk_level | |
} | |
for t in self.trends | |
] | |
} | |