File size: 15,461 Bytes
dcb2a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
"""Specialized strategies for autonomous business and revenue generation."""

import logging
from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
import json
from dataclasses import dataclass, field
from enum import Enum
from datetime import datetime
import numpy as np
from collections import defaultdict

from .base import ReasoningStrategy

class VentureType(Enum):
    """Types of business ventures."""
    AI_STARTUP = "ai_startup"
    SAAS = "saas"
    API_SERVICE = "api_service"
    DATA_ANALYTICS = "data_analytics"
    AUTOMATION_SERVICE = "automation_service"
    CONSULTING = "consulting"
    DIGITAL_PRODUCTS = "digital_products"
    MARKETPLACE = "marketplace"

class RevenueStream(Enum):
    """Types of revenue streams."""
    SUBSCRIPTION = "subscription"
    USAGE_BASED = "usage_based"
    LICENSING = "licensing"
    CONSULTING = "consulting"
    PRODUCT_SALES = "product_sales"
    COMMISSION = "commission"
    ADVERTISING = "advertising"
    PARTNERSHIP = "partnership"

@dataclass
class VentureMetrics:
    """Key business metrics."""
    revenue: float
    profit_margin: float
    customer_acquisition_cost: float
    lifetime_value: float
    churn_rate: float
    growth_rate: float
    burn_rate: float
    runway_months: float
    roi: float

@dataclass
class MarketOpportunity:
    """Market opportunity analysis."""
    market_size: float
    growth_potential: float
    competition_level: float
    entry_barriers: float
    regulatory_risks: float
    technology_risks: float
    monetization_potential: float

class AIStartupStrategy(ReasoningStrategy):
    """
    Advanced AI startup strategy that:
    1. Identifies profitable AI applications
    2. Analyzes market opportunities
    3. Develops MVP strategies
    4. Plans scaling approaches
    5. Optimizes revenue streams
    """
    
    async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
        """Generate AI startup strategy."""
        try:
            # Market analysis
            market = await self._analyze_market(query, context)
            
            # Technology assessment
            tech = await self._assess_technology(market, context)
            
            # Business model
            model = await self._develop_business_model(tech, context)
            
            # Growth strategy
            strategy = await self._create_growth_strategy(model, context)
            
            # Financial projections
            projections = await self._project_financials(strategy, context)
            
            return {
                "success": projections["annual_profit"] >= 1_000_000,
                "market_analysis": market,
                "tech_assessment": tech,
                "business_model": model,
                "growth_strategy": strategy,
                "financials": projections,
                "confidence": self._calculate_confidence(projections)
            }
        except Exception as e:
            logging.error(f"Error in AI startup strategy: {str(e)}")
            return {"success": False, "error": str(e)}

class SaaSVentureStrategy(ReasoningStrategy):
    """
    Advanced SaaS venture strategy that:
    1. Identifies scalable SaaS opportunities
    2. Develops pricing strategies
    3. Plans customer acquisition
    4. Optimizes retention
    5. Maximizes recurring revenue
    """
    
    async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
        """Generate SaaS venture strategy."""
        try:
            # Opportunity analysis
            opportunity = await self._analyze_opportunity(query, context)
            
            # Product strategy
            product = await self._develop_product_strategy(opportunity, context)
            
            # Pricing model
            pricing = await self._create_pricing_model(product, context)
            
            # Growth plan
            growth = await self._plan_growth(pricing, context)
            
            # Revenue projections
            projections = await self._project_revenue(growth, context)
            
            return {
                "success": projections["annual_revenue"] >= 1_000_000,
                "opportunity": opportunity,
                "product": product,
                "pricing": pricing,
                "growth": growth,
                "projections": projections
            }
        except Exception as e:
            logging.error(f"Error in SaaS venture strategy: {str(e)}")
            return {"success": False, "error": str(e)}

class AutomationVentureStrategy(ReasoningStrategy):
    """
    Advanced automation venture strategy that:
    1. Identifies automation opportunities
    2. Analyzes cost-saving potential
    3. Develops automation solutions
    4. Plans implementation
    5. Maximizes ROI
    """
    
    async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
        """Generate automation venture strategy."""
        try:
            # Opportunity identification
            opportunities = await self._identify_opportunities(query, context)
            
            # Solution development
            solutions = await self._develop_solutions(opportunities, context)
            
            # Implementation strategy
            implementation = await self._create_implementation_strategy(solutions, context)
            
            # ROI analysis
            roi = await self._analyze_roi(implementation, context)
            
            # Scale strategy
            scale = await self._create_scale_strategy(roi, context)
            
            return {
                "success": roi["annual_profit"] >= 1_000_000,
                "opportunities": opportunities,
                "solutions": solutions,
                "implementation": implementation,
                "roi": roi,
                "scale": scale
            }
        except Exception as e:
            logging.error(f"Error in automation venture strategy: {str(e)}")
            return {"success": False, "error": str(e)}

class DataVentureStrategy(ReasoningStrategy):
    """
    Advanced data venture strategy that:
    1. Identifies valuable data opportunities
    2. Develops data products
    3. Creates monetization strategies
    4. Ensures compliance
    5. Maximizes data value
    """
    
    async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
        """Generate data venture strategy."""
        try:
            # Data opportunity analysis
            opportunity = await self._analyze_data_opportunity(query, context)
            
            # Product development
            product = await self._develop_data_product(opportunity, context)
            
            # Monetization strategy
            monetization = await self._create_monetization_strategy(product, context)
            
            # Compliance plan
            compliance = await self._ensure_compliance(monetization, context)
            
            # Scale plan
            scale = await self._plan_scaling(compliance, context)
            
            return {
                "success": monetization["annual_revenue"] >= 1_000_000,
                "opportunity": opportunity,
                "product": product,
                "monetization": monetization,
                "compliance": compliance,
                "scale": scale
            }
        except Exception as e:
            logging.error(f"Error in data venture strategy: {str(e)}")
            return {"success": False, "error": str(e)}

class APIVentureStrategy(ReasoningStrategy):
    """
    Advanced API venture strategy that:
    1. Identifies API opportunities
    2. Develops API products
    3. Creates pricing models
    4. Plans scaling
    5. Maximizes API value
    """
    
    async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
        """Generate API venture strategy."""
        try:
            # API opportunity analysis
            opportunity = await self._analyze_api_opportunity(query, context)
            
            # Product development
            product = await self._develop_api_product(opportunity, context)
            
            # Pricing strategy
            pricing = await self._create_api_pricing(product, context)
            
            # Scale strategy
            scale = await self._plan_api_scaling(pricing, context)
            
            # Revenue projections
            projections = await self._project_api_revenue(scale, context)
            
            return {
                "success": projections["annual_revenue"] >= 1_000_000,
                "opportunity": opportunity,
                "product": product,
                "pricing": pricing,
                "scale": scale,
                "projections": projections
            }
        except Exception as e:
            logging.error(f"Error in API venture strategy: {str(e)}")
            return {"success": False, "error": str(e)}

class MarketplaceVentureStrategy(ReasoningStrategy):
    """
    Advanced marketplace venture strategy that:
    1. Identifies marketplace opportunities
    2. Develops platform strategy
    3. Plans liquidity generation
    4. Optimizes matching
    5. Maximizes transaction value
    """
    
    async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
        """Generate marketplace venture strategy."""
        try:
            # Opportunity analysis
            opportunity = await self._analyze_marketplace_opportunity(query, context)
            
            # Platform strategy
            platform = await self._develop_platform_strategy(opportunity, context)
            
            # Liquidity strategy
            liquidity = await self._create_liquidity_strategy(platform, context)
            
            # Growth strategy
            growth = await self._plan_marketplace_growth(liquidity, context)
            
            # Revenue projections
            projections = await self._project_marketplace_revenue(growth, context)
            
            return {
                "success": projections["annual_revenue"] >= 1_000_000,
                "opportunity": opportunity,
                "platform": platform,
                "liquidity": liquidity,
                "growth": growth,
                "projections": projections
            }
        except Exception as e:
            logging.error(f"Error in marketplace venture strategy: {str(e)}")
            return {"success": False, "error": str(e)}

class VenturePortfolioStrategy(ReasoningStrategy):
    """
    Advanced venture portfolio strategy that:
    1. Optimizes venture mix
    2. Balances risk-reward
    3. Allocates resources
    4. Manages dependencies
    5. Maximizes portfolio value
    """
    
    async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
        """Generate venture portfolio strategy."""
        try:
            # Portfolio analysis
            analysis = await self._analyze_portfolio(query, context)
            
            # Venture selection
            selection = await self._select_ventures(analysis, context)
            
            # Resource allocation
            allocation = await self._allocate_resources(selection, context)
            
            # Risk management
            risk = await self._manage_risk(allocation, context)
            
            # Portfolio projections
            projections = await self._project_portfolio(risk, context)
            
            return {
                "success": projections["annual_profit"] >= 1_000_000,
                "analysis": analysis,
                "selection": selection,
                "allocation": allocation,
                "risk": risk,
                "projections": projections
            }
        except Exception as e:
            logging.error(f"Error in venture portfolio strategy: {str(e)}")
            return {"success": False, "error": str(e)}

    async def _analyze_portfolio(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
        """Analyze potential venture portfolio."""
        prompt = f"""
        Analyze venture portfolio opportunities:
        Query: {query}
        Context: {json.dumps(context)}
        
        Consider:
        1. Market opportunities
        2. Technology trends
        3. Resource requirements
        4. Risk factors
        5. Synergy potential
        
        Format as:
        [Analysis]
        Opportunities: ...
        Trends: ...
        Resources: ...
        Risks: ...
        Synergies: ...
        """
        
        response = await context["groq_api"].predict(prompt)
        return self._parse_portfolio_analysis(response["answer"])

    def _parse_portfolio_analysis(self, response: str) -> Dict[str, Any]:
        """Parse portfolio analysis from response."""
        analysis = {
            "opportunities": [],
            "trends": [],
            "resources": {},
            "risks": [],
            "synergies": []
        }
        
        current_section = None
        for line in response.split('\n'):
            line = line.strip()
            if line.startswith('Opportunities:'):
                current_section = "opportunities"
            elif line.startswith('Trends:'):
                current_section = "trends"
            elif line.startswith('Resources:'):
                current_section = "resources"
            elif line.startswith('Risks:'):
                current_section = "risks"
            elif line.startswith('Synergies:'):
                current_section = "synergies"
            elif current_section and line:
                if current_section == "resources":
                    try:
                        key, value = line.split(':')
                        analysis[current_section][key.strip()] = value.strip()
                    except:
                        pass
                else:
                    analysis[current_section].append(line)
        
        return analysis

    def get_venture_metrics(self) -> Dict[str, Any]:
        """Get comprehensive venture metrics."""
        return {
            "portfolio_metrics": {
                "total_ventures": len(self.ventures),
                "profitable_ventures": sum(1 for v in self.ventures if v.metrics.profit_margin > 0),
                "total_revenue": sum(v.metrics.revenue for v in self.ventures),
                "average_margin": np.mean([v.metrics.profit_margin for v in self.ventures]),
                "portfolio_roi": np.mean([v.metrics.roi for v in self.ventures])
            },
            "market_metrics": {
                "total_market_size": sum(v.opportunity.market_size for v in self.ventures),
                "average_growth": np.mean([v.opportunity.growth_potential for v in self.ventures]),
                "risk_score": np.mean([v.opportunity.regulatory_risks + v.opportunity.technology_risks for v in self.ventures])
            },
            "performance_metrics": {
                "customer_acquisition": np.mean([v.metrics.customer_acquisition_cost for v in self.ventures]),
                "lifetime_value": np.mean([v.metrics.lifetime_value for v in self.ventures]),
                "churn_rate": np.mean([v.metrics.churn_rate for v in self.ventures]),
                "burn_rate": sum(v.metrics.burn_rate for v in self.ventures)
            }
        }