File size: 13,096 Bytes
dcb2a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
"""Quantum-inspired reasoning implementations."""

import logging
from typing import Dict, Any, List
import json

from .base import ReasoningStrategy

class QuantumReasoning(ReasoningStrategy):
    """Implements quantum-inspired reasoning using superposition and entanglement principles."""
    
    async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
        try:
            # Create superposition of possibilities
            superposition = await self._create_superposition(query, context)
            
            # Analyze entanglements
            entanglements = await self._analyze_entanglements(superposition, context)
            
            # Perform quantum interference
            interference = await self._quantum_interference(superposition, entanglements, context)
            
            # Collapse to solution
            solution = await self._collapse_to_solution(interference, context)
            
            return {
                "success": True,
                "answer": solution["conclusion"],
                "superposition": superposition,
                "entanglements": entanglements,
                "interference_patterns": interference,
                "measurement": solution["measurement"],
                "confidence": solution["confidence"]
            }
        except Exception as e:
            return {"success": False, "error": str(e)}

    async def _create_superposition(self, query: str, context: Dict[str, Any]) -> List[Dict[str, Any]]:
        prompt = f"""
        Create superposition of possible solutions:
        Query: {query}
        Context: {json.dumps(context)}
        
        For each possibility state:
        1. [State]: Description of possibility
        2. [Amplitude]: Relative strength (0-1)
        3. [Phase]: Relationship to other states
        4. [Basis]: Underlying assumptions
        
        Format as:
        [S1]
        State: ...
        Amplitude: ...
        Phase: ...
        Basis: ...
        """
        
        response = await context["groq_api"].predict(prompt)
        return self._parse_superposition(response["answer"])

    async def _analyze_entanglements(self, superposition: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]:
        prompt = f"""
        Analyze entanglements between possibilities:
        Superposition: {json.dumps(superposition)}
        Context: {json.dumps(context)}
        
        For each entanglement describe:
        1. [States]: Entangled states
        2. [Type]: Nature of entanglement
        3. [Strength]: Correlation strength
        4. [Impact]: Effect on outcomes
        
        Format as:
        [E1]
        States: ...
        Type: ...
        Strength: ...
        Impact: ...
        """
        
        response = await context["groq_api"].predict(prompt)
        return self._parse_entanglements(response["answer"])

    async def _quantum_interference(self, superposition: List[Dict[str, Any]], entanglements: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]:
        prompt = f"""
        Calculate quantum interference patterns:
        Superposition: {json.dumps(superposition)}
        Entanglements: {json.dumps(entanglements)}
        Context: {json.dumps(context)}
        
        For each interference pattern:
        1. [Pattern]: Description
        2. [Amplitude]: Combined strength
        3. [Phase]: Combined phase
        4. [Effect]: Impact on solution space
        
        Format as:
        [I1]
        Pattern: ...
        Amplitude: ...
        Phase: ...
        Effect: ...
        """
        
        response = await context["groq_api"].predict(prompt)
        return self._parse_interference(response["answer"])

    async def _collapse_to_solution(self, interference: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, Any]:
        prompt = f"""
        Collapse quantum state to final solution:
        Interference: {json.dumps(interference)}
        Context: {json.dumps(context)}
        
        Provide:
        1. Final measured state
        2. Measurement confidence
        3. Key quantum effects utilized
        4. Overall conclusion
        5. Confidence level (0-1)
        """
        
        response = await context["groq_api"].predict(prompt)
        return self._parse_collapse(response["answer"])

    def _parse_superposition(self, response: str) -> List[Dict[str, Any]]:
        """Parse superposition states from response."""
        superposition = []
        current_state = None
        
        for line in response.split('\n'):
            line = line.strip()
            if not line:
                continue
                
            if line.startswith('[S'):
                if current_state:
                    superposition.append(current_state)
                current_state = {
                    "state": "",
                    "amplitude": 0.0,
                    "phase": "",
                    "basis": ""
                }
            elif current_state:
                if line.startswith('State:'):
                    current_state["state"] = line[6:].strip()
                elif line.startswith('Amplitude:'):
                    try:
                        current_state["amplitude"] = float(line[10:].strip())
                    except:
                        pass
                elif line.startswith('Phase:'):
                    current_state["phase"] = line[6:].strip()
                elif line.startswith('Basis:'):
                    current_state["basis"] = line[6:].strip()
        
        if current_state:
            superposition.append(current_state)
        
        return superposition

    def _parse_entanglements(self, response: str) -> List[Dict[str, Any]]:
        """Parse entanglements from response."""
        entanglements = []
        current_entanglement = None
        
        for line in response.split('\n'):
            line = line.strip()
            if not line:
                continue
                
            if line.startswith('[E'):
                if current_entanglement:
                    entanglements.append(current_entanglement)
                current_entanglement = {
                    "states": "",
                    "type": "",
                    "strength": 0.0,
                    "impact": ""
                }
            elif current_entanglement:
                if line.startswith('States:'):
                    current_entanglement["states"] = line[7:].strip()
                elif line.startswith('Type:'):
                    current_entanglement["type"] = line[5:].strip()
                elif line.startswith('Strength:'):
                    try:
                        current_entanglement["strength"] = float(line[9:].strip())
                    except:
                        pass
                elif line.startswith('Impact:'):
                    current_entanglement["impact"] = line[7:].strip()
        
        if current_entanglement:
            entanglements.append(current_entanglement)
        
        return entanglements

    def _parse_interference(self, response: str) -> List[Dict[str, Any]]:
        """Parse interference patterns from response."""
        interference = []
        current_pattern = None
        
        for line in response.split('\n'):
            line = line.strip()
            if not line:
                continue
                
            if line.startswith('[I'):
                if current_pattern:
                    interference.append(current_pattern)
                current_pattern = {
                    "pattern": "",
                    "amplitude": 0.0,
                    "phase": "",
                    "effect": ""
                }
            elif current_pattern:
                if line.startswith('Pattern:'):
                    current_pattern["pattern"] = line[8:].strip()
                elif line.startswith('Amplitude:'):
                    try:
                        current_pattern["amplitude"] = float(line[10:].strip())
                    except:
                        pass
                elif line.startswith('Phase:'):
                    current_pattern["phase"] = line[6:].strip()
                elif line.startswith('Effect:'):
                    current_pattern["effect"] = line[7:].strip()
        
        if current_pattern:
            interference.append(current_pattern)
        
        return interference

    def _parse_collapse(self, response: str) -> Dict[str, Any]:
        """Parse collapse to solution from response."""
        collapse = {
            "measurement": "",
            "confidence": 0.0,
            "quantum_effects": [],
            "conclusion": ""
        }
        
        mode = None
        for line in response.split('\n'):
            line = line.strip()
            if not line:
                continue
                
            if line.startswith('Measurement:'):
                collapse["measurement"] = line[12:].strip()
            elif line.startswith('Confidence:'):
                try:
                    collapse["confidence"] = float(line[11:].strip())
                except:
                    collapse["confidence"] = 0.5
            elif line.startswith('Quantum Effects:'):
                mode = "effects"
            elif mode == "effects" and line.startswith('- '):
                collapse["quantum_effects"].append(line[2:].strip())
            elif line.startswith('Conclusion:'):
                collapse["conclusion"] = line[11:].strip()
        
        return collapse


class QuantumInspiredStrategy(ReasoningStrategy):
    """Implements Quantum-Inspired reasoning."""
    
    async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
        try:
            # Create a clean context for serialization
            clean_context = {k: v for k, v in context.items() if k != "groq_api"}
            
            prompt = f"""
            You are a meta-learning reasoning system that adapts its approach based on problem characteristics.
            
            Problem Type: 
            Query: {query}
            Context: {json.dumps(clean_context)}
            
            Analyze this problem using meta-learning principles. Structure your response EXACTLY as follows:

            PROBLEM ANALYSIS:
            - [First key aspect or complexity factor]
            - [Second key aspect or complexity factor]
            - [Third key aspect or complexity factor]

            SOLUTION PATHS:
            - Path 1: [Specific solution approach]
            - Path 2: [Alternative solution approach]
            - Path 3: [Another alternative approach]

            META INSIGHTS:
            - Learning 1: [Key insight about the problem space]
            - Learning 2: [Key insight about solution approaches]
            - Learning 3: [Key insight about trade-offs]

            CONCLUSION:
            [Final synthesized solution incorporating meta-learnings]
            """
            
            response = await context["groq_api"].predict(prompt)
            
            if not response["success"]:
                return response
                
            # Parse response into components
            lines = response["answer"].split("\n")
            problem_analysis = []
            solution_paths = []
            meta_insights = []
            conclusion = ""
            
            section = None
            for line in lines:
                line = line.strip()
                if not line:
                    continue
                    
                if "PROBLEM ANALYSIS:" in line:
                    section = "analysis"
                elif "SOLUTION PATHS:" in line:
                    section = "paths"
                elif "META INSIGHTS:" in line:
                    section = "insights"
                elif "CONCLUSION:" in line:
                    section = "conclusion"
                elif line.startswith("-"):
                    content = line.lstrip("- ").strip()
                    if section == "analysis":
                        problem_analysis.append(content)
                    elif section == "paths":
                        solution_paths.append(content)
                    elif section == "insights":
                        meta_insights.append(content)
                elif section == "conclusion":
                    conclusion += line + " "
            
            return {
                "success": True,
                "problem_analysis": problem_analysis,
                "solution_paths": solution_paths,
                "meta_insights": meta_insights,
                "conclusion": conclusion.strip(),
                # Add standard fields for compatibility
                "reasoning_path": problem_analysis + solution_paths + meta_insights,
                "conclusion": conclusion.strip()
            }
            
        except Exception as e:
            return {"success": False, "error": str(e)}