Spaces:
Runtime error
Runtime error
File size: 15,404 Bytes
dcb2a99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
"""Meta-learning reasoning implementation with advanced adaptation capabilities."""
import logging
from typing import Dict, Any, List, Optional, Set, Tuple, Callable
import json
from dataclasses import dataclass, field
from enum import Enum
from collections import defaultdict
import numpy as np
from datetime import datetime
from .base import ReasoningStrategy
class MetaFeatureType(Enum):
"""Types of meta-features for learning."""
PROBLEM_STRUCTURE = "problem_structure"
SOLUTION_PATTERN = "solution_pattern"
REASONING_STYLE = "reasoning_style"
ERROR_PATTERN = "error_pattern"
PERFORMANCE_METRIC = "performance_metric"
ADAPTATION_SIGNAL = "adaptation_signal"
@dataclass
class MetaFeature:
"""Represents a meta-feature for learning."""
type: MetaFeatureType
name: str
value: Any
confidence: float
timestamp: datetime
metadata: Dict[str, Any] = field(default_factory=dict)
@dataclass
class LearningEpisode:
"""Represents a learning episode."""
id: str
query: str
features: List[MetaFeature]
outcome: Dict[str, Any]
performance: float
timestamp: datetime
metadata: Dict[str, Any] = field(default_factory=dict)
class MetaLearningStrategy(ReasoningStrategy):
"""
Advanced Meta-Learning reasoning implementation with:
- Dynamic strategy adaptation
- Performance tracking
- Pattern recognition
- Automated optimization
- Cross-episode learning
"""
def __init__(self,
learning_rate: float = 0.1,
memory_size: int = 1000,
adaptation_threshold: float = 0.7,
exploration_rate: float = 0.2):
self.learning_rate = learning_rate
self.memory_size = memory_size
self.adaptation_threshold = adaptation_threshold
self.exploration_rate = exploration_rate
# Learning components
self.episode_memory: List[LearningEpisode] = []
self.feature_patterns: Dict[str, Dict[str, float]] = defaultdict(lambda: defaultdict(float))
self.strategy_performance: Dict[str, List[float]] = defaultdict(list)
self.adaptation_history: List[Dict[str, Any]] = []
# Performance tracking
self.success_rate: float = 0.0
self.adaptation_rate: float = 0.0
self.exploration_count: int = 0
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""Main reasoning method implementing meta-learning."""
try:
# Extract meta-features
features = await self._extract_meta_features(query, context)
# Select optimal strategy
strategy = await self._select_strategy(features, context)
# Apply strategy with adaptation
result = await self._apply_strategy(strategy, query, features, context)
# Learn from episode
episode = self._create_episode(query, features, result)
self._learn_from_episode(episode)
# Optimize performance
self._optimize_performance()
return {
"success": True,
"answer": result["answer"],
"confidence": result["confidence"],
"meta_features": [self._feature_to_dict(f) for f in features],
"selected_strategy": strategy,
"adaptations": result["adaptations"],
"performance_metrics": result["performance_metrics"],
"meta_insights": result["meta_insights"]
}
except Exception as e:
logging.error(f"Error in meta-learning reasoning: {str(e)}")
return {"success": False, "error": str(e)}
async def _extract_meta_features(self, query: str, context: Dict[str, Any]) -> List[MetaFeature]:
"""Extract meta-features from query and context."""
prompt = f"""
Extract meta-features for learning:
Query: {query}
Context: {json.dumps(context)}
For each feature type:
1. Problem Structure
2. Solution Patterns
3. Reasoning Style
4. Error Patterns
5. Performance Metrics
6. Adaptation Signals
Format as:
[Type1]
Name: ...
Value: ...
Confidence: ...
Metadata: ...
[Type2]
...
"""
response = await context["groq_api"].predict(prompt)
return self._parse_meta_features(response["answer"])
async def _select_strategy(self, features: List[MetaFeature], context: Dict[str, Any]) -> str:
"""Select optimal reasoning strategy based on meta-features."""
prompt = f"""
Select optimal reasoning strategy:
Features: {json.dumps([self._feature_to_dict(f) for f in features])}
Context: {json.dumps(context)}
Consider:
1. Past performance patterns
2. Feature relevance
3. Adaptation potential
4. Resource constraints
Format as:
[Selection]
Strategy: ...
Rationale: ...
Confidence: ...
Adaptations: ...
"""
response = await context["groq_api"].predict(prompt)
return self._parse_strategy_selection(response["answer"])
async def _apply_strategy(self, strategy: str, query: str, features: List[MetaFeature], context: Dict[str, Any]) -> Dict[str, Any]:
"""Apply selected strategy with dynamic adaptation."""
prompt = f"""
Apply strategy with meta-learning:
Strategy: {strategy}
Query: {query}
Features: {json.dumps([self._feature_to_dict(f) for f in features])}
Context: {json.dumps(context)}
Provide:
1. Main reasoning steps
2. Adaptation points
3. Performance metrics
4. Meta-insights
Format as:
[Application]
Steps: ...
Adaptations: ...
Metrics: ...
Insights: ...
[Result]
Answer: ...
Confidence: ...
"""
response = await context["groq_api"].predict(prompt)
return self._parse_strategy_application(response["answer"])
def _create_episode(self, query: str, features: List[MetaFeature], result: Dict[str, Any]) -> LearningEpisode:
"""Create a learning episode from the current interaction."""
return LearningEpisode(
id=f"episode_{len(self.episode_memory)}",
query=query,
features=features,
outcome=result,
performance=result.get("confidence", 0.0),
timestamp=datetime.now(),
metadata={
"adaptations": result.get("adaptations", []),
"metrics": result.get("performance_metrics", {})
}
)
def _learn_from_episode(self, episode: LearningEpisode):
"""Learn from a completed episode."""
# Update episode memory
self.episode_memory.append(episode)
if len(self.episode_memory) > self.memory_size:
self.episode_memory.pop(0)
# Update feature patterns
for feature in episode.features:
pattern_key = f"{feature.type.value}:{feature.name}"
self.feature_patterns[pattern_key]["count"] += 1
self.feature_patterns[pattern_key]["success"] += episode.performance
# Update strategy performance
strategy = episode.metadata.get("selected_strategy", "default")
self.strategy_performance[strategy].append(episode.performance)
# Track adaptations
self.adaptation_history.append({
"timestamp": episode.timestamp,
"adaptations": episode.metadata.get("adaptations", []),
"performance": episode.performance
})
# Update performance metrics
self._update_performance_metrics(episode)
def _optimize_performance(self):
"""Optimize meta-learning performance."""
# Adjust learning rate
recent_performance = [e.performance for e in self.episode_memory[-10:]]
if recent_performance:
avg_performance = sum(recent_performance) / len(recent_performance)
if avg_performance > 0.8:
self.learning_rate *= 0.9 # Reduce learning rate when performing well
elif avg_performance < 0.5:
self.learning_rate *= 1.1 # Increase learning rate when performing poorly
# Adjust exploration rate
self.exploration_rate = max(0.1, self.exploration_rate * 0.995) # Gradually reduce exploration
# Prune ineffective patterns
for pattern, stats in list(self.feature_patterns.items()):
if stats["count"] > 10 and stats["success"] / stats["count"] < 0.3:
del self.feature_patterns[pattern]
# Update adaptation threshold
recent_adaptations = [a["performance"] for a in self.adaptation_history[-10:]]
if recent_adaptations:
self.adaptation_threshold = sum(recent_adaptations) / len(recent_adaptations)
def _update_performance_metrics(self, episode: LearningEpisode):
"""Update performance tracking metrics."""
# Update success rate
self.success_rate = (self.success_rate * len(self.episode_memory) + episode.performance) / (len(self.episode_memory) + 1)
# Update adaptation rate
adaptations = len(episode.metadata.get("adaptations", []))
self.adaptation_rate = (self.adaptation_rate * len(self.adaptation_history) + (adaptations > 0)) / (len(self.adaptation_history) + 1)
# Track exploration
if episode.metadata.get("exploration", False):
self.exploration_count += 1
def _parse_meta_features(self, response: str) -> List[MetaFeature]:
"""Parse meta-features from response."""
features = []
current_type = None
current_feature = None
for line in response.split('\n'):
line = line.strip()
if not line:
continue
if line.startswith('[Type'):
if current_feature:
features.append(current_feature)
current_feature = None
try:
type_str = line[1:-1].lower()
current_type = MetaFeatureType(type_str)
except ValueError:
current_type = None
elif current_type and line.startswith('Name:'):
current_feature = MetaFeature(
type=current_type,
name=line[5:].strip(),
value=None,
confidence=0.0,
timestamp=datetime.now(),
metadata={}
)
elif current_feature:
if line.startswith('Value:'):
current_feature.value = line[6:].strip()
elif line.startswith('Confidence:'):
try:
current_feature.confidence = float(line[11:].strip())
except:
pass
elif line.startswith('Metadata:'):
try:
current_feature.metadata = json.loads(line[9:].strip())
except:
pass
if current_feature:
features.append(current_feature)
return features
def _parse_strategy_selection(self, response: str) -> str:
"""Parse strategy selection from response."""
lines = response.split('\n')
strategy = "default"
for line in lines:
if line.startswith('Strategy:'):
strategy = line[9:].strip()
break
return strategy
def _parse_strategy_application(self, response: str) -> Dict[str, Any]:
"""Parse strategy application results."""
result = {
"answer": "",
"confidence": 0.0,
"steps": [],
"adaptations": [],
"performance_metrics": {},
"meta_insights": []
}
section = None
for line in response.split('\n'):
line = line.strip()
if not line:
continue
if line.startswith('[Application]'):
section = "application"
elif line.startswith('[Result]'):
section = "result"
elif section == "application":
if line.startswith('Steps:'):
result["steps"] = [s.strip() for s in line[6:].split(',')]
elif line.startswith('Adaptations:'):
result["adaptations"] = [a.strip() for a in line[12:].split(',')]
elif line.startswith('Metrics:'):
try:
result["performance_metrics"] = json.loads(line[8:].strip())
except:
pass
elif line.startswith('Insights:'):
result["meta_insights"] = [i.strip() for i in line[9:].split(',')]
elif section == "result":
if line.startswith('Answer:'):
result["answer"] = line[7:].strip()
elif line.startswith('Confidence:'):
try:
result["confidence"] = float(line[11:].strip())
except:
result["confidence"] = 0.5
return result
def _feature_to_dict(self, feature: MetaFeature) -> Dict[str, Any]:
"""Convert feature to dictionary for serialization."""
return {
"type": feature.type.value,
"name": feature.name,
"value": feature.value,
"confidence": feature.confidence,
"timestamp": feature.timestamp.isoformat(),
"metadata": feature.metadata
}
def get_performance_metrics(self) -> Dict[str, Any]:
"""Get current performance metrics."""
return {
"success_rate": self.success_rate,
"adaptation_rate": self.adaptation_rate,
"exploration_count": self.exploration_count,
"episode_count": len(self.episode_memory),
"pattern_count": len(self.feature_patterns),
"learning_rate": self.learning_rate,
"exploration_rate": self.exploration_rate
}
def get_top_patterns(self, n: int = 10) -> List[Tuple[str, float]]:
"""Get top performing patterns."""
pattern_scores = []
for pattern, stats in self.feature_patterns.items():
if stats["count"] > 0:
score = stats["success"] / stats["count"]
pattern_scores.append((pattern, score))
return sorted(pattern_scores, key=lambda x: x[1], reverse=True)[:n]
def clear_memory(self):
"""Clear learning memory."""
self.episode_memory.clear()
self.feature_patterns.clear()
self.strategy_performance.clear()
self.adaptation_history.clear()
|