File size: 5,348 Bytes
dcb2a99
 
 
 
 
 
 
 
 
 
 
 
 
3921722
 
 
 
dcb2a99
 
 
 
798eb17
dcb2a99
 
 
 
 
3921722
 
 
 
 
 
 
798eb17
 
 
 
 
3921722
 
dcb2a99
 
 
 
3921722
 
 
 
dcb2a99
 
 
 
 
 
798eb17
 
 
dcb2a99
 
 
798eb17
 
 
 
dcb2a99
 
798eb17
dcb2a99
798eb17
 
 
 
 
 
 
 
 
 
 
dcb2a99
 
3921722
dcb2a99
798eb17
 
 
 
 
 
 
 
 
 
 
 
 
 
dcb2a99
 
 
 
798eb17
 
 
 
 
 
 
 
 
 
 
 
 
dcb2a99
 
798eb17
 
 
 
3921722
dcb2a99
798eb17
 
 
3921722
798eb17
 
dcb2a99
798eb17
 
dcb2a99
 
798eb17
 
 
 
 
 
 
 
 
 
 
 
dcb2a99
 
798eb17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcb2a99
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
"""
Advanced Agentic System Interface
-------------------------------
Provides an interface to interact with the autonomous agent system
using local LLM for improved performance.
"""

import gradio as gr
import asyncio
from typing import Dict, Any, List
import json
from datetime import datetime
import logging
import os
import socket
import requests
from requests.adapters import HTTPAdapter, Retry

from agentic_system import AgenticSystem
from team_management import TeamManager
from orchestrator import AgentOrchestrator
from reasoning import UnifiedReasoningEngine

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Configure network settings
TIMEOUT = int(os.getenv('REQUESTS_TIMEOUT', '30'))
RETRIES = 3

def check_network():
    """Check network connectivity."""
    try:
        # Test connection to Hugging Face
        response = requests.get('https://huggingface.co', timeout=TIMEOUT)
        return response.status_code == 200
    except requests.RequestException as e:
        logger.warning(f"Network connectivity issue: {e}")
        return False

class AgentInterface:
    """Interface for the agentic system."""
    def __init__(self):
        """Initialize the interface components."""
        # Check network connectivity
        if not check_network():
            logger.warning("Network connectivity issues detected")
            
        self.orchestrator = AgentOrchestrator()
        self.reasoning_engine = UnifiedReasoningEngine(
            min_confidence=0.7,
            parallel_threshold=3,
            learning_rate=0.1
        )
        self.team_manager = TeamManager(self.orchestrator)
        self.system = AgenticSystem()

    async def process_query(self, message: str) -> str:
        """Process user query through the reasoning system."""
        try:
            # Log incoming query
            logger.info(f"Processing query: {message}")

            # Get reasoning result
            result = await self.reasoning_engine.reason(
                query=message,
                context={"timestamp": datetime.now().isoformat()}
            )

            # Format response
            if result.success:
                response = f"Answer: {result.answer}\nConfidence: {result.confidence:.2f}"
                if result.meta_insights:
                    response += "\nInsights:\n" + "\n".join(f"- {insight}" for insight in result.meta_insights)
            else:
                response = "I apologize, but I couldn't process your query effectively. Please try rephrasing or providing more context."

            return response

        except Exception as e:
            logger.error(f"Error processing query: {e}")
            return f"An error occurred: {str(e)}"

    def health_check(self) -> Dict[str, Any]:
        """Check system health."""
        return {
            "status": "healthy",
            "network": check_network(),
            "components": {
                "orchestrator": self.orchestrator is not None,
                "reasoning_engine": self.reasoning_engine is not None,
                "team_manager": self.team_manager is not None,
                "system": self.system is not None
            },
            "timestamp": datetime.now().isoformat()
        }

# Initialize interface
interface = AgentInterface()

# Create Gradio interface
with gr.Blocks(title="Advanced Reasoning System", theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    # 🤖 Advanced Reasoning System
    
    Welcome to the Advanced Reasoning System! This system combines multiple reasoning strategies:
    - Chain of Thought
    - Tree of Thoughts
    - Meta Learning
    - Local LLM
    - And more!
    
    Ask any question and the system will use its advanced reasoning capabilities to help you.
    """)
    
    with gr.Row():
        with gr.Column(scale=4):
            query_input = gr.Textbox(
                label="Your Question",
                placeholder="Enter your question here...",
                lines=3
            )
            with gr.Row():
                submit_btn = gr.Button("Submit", variant="primary")
                clear_btn = gr.Button("Clear")
        
        with gr.Column(scale=6):
            output = gr.Textbox(
                label="Response",
                lines=10,
                interactive=False
            )
    
    # Add examples
    gr.Examples(
        examples=[
            "How would you approach designing a scalable microservices architecture?",
            "What are the key considerations for implementing a secure authentication system?",
            "Can you help me understand the differences between various machine learning algorithms?",
        ],
        inputs=query_input,
        label="Example Questions"
    )
    
    # Event handlers
    submit_btn.click(
        fn=interface.process_query,
        inputs=query_input,
        outputs=output,
        api_name="process_query"
    )
    clear_btn.click(
        fn=lambda: ("", ""),
        inputs=None,
        outputs=[query_input, output],
        api_name="clear"
    )
    
    # Add health check endpoint
    demo.load(
        fn=interface.health_check,
        inputs=None,
        outputs=None,
        api_name="health"
    )

# Launch the interface
if __name__ == "__main__":
    demo.launch()