File size: 9,170 Bytes
dcb2a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
"""Neurosymbolic reasoning implementation."""

import logging
from typing import Dict, Any, List, Tuple
import json

from .base import ReasoningStrategy

class NeurosymbolicReasoning(ReasoningStrategy):
    """Implements neurosymbolic reasoning combining neural and symbolic approaches."""
    
    async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
        try:
            # Neural processing
            neural_features = await self._neural_processing(query, context)
            
            # Symbolic reasoning
            symbolic_rules = await self._symbolic_reasoning(neural_features, context)
            
            # Integration
            integrated = await self._neurosymbolic_integration(neural_features, symbolic_rules, context)
            
            # Final inference
            conclusion = await self._final_inference(integrated, context)
            
            return {
                "success": True,
                "answer": conclusion["answer"],
                "neural_features": neural_features,
                "symbolic_rules": symbolic_rules,
                "integrated_reasoning": integrated,
                "confidence": conclusion["confidence"],
                "explanation": conclusion["explanation"]
            }
        except Exception as e:
            return {"success": False, "error": str(e)}

    async def _neural_processing(self, query: str, context: Dict[str, Any]) -> List[Dict[str, Any]]:
        prompt = f"""
        Extract neural features from query:
        Query: {query}
        Context: {json.dumps(context)}
        
        For each feature:
        1. [Type]: Feature type
        2. [Value]: Extracted value
        3. [Confidence]: Extraction confidence
        4. [Relations]: Related concepts
        
        Format as:
        [F1]
        Type: ...
        Value: ...
        Confidence: ...
        Relations: ...
        """
        
        response = await context["groq_api"].predict(prompt)
        return self._parse_features(response["answer"])

    async def _symbolic_reasoning(self, features: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]:
        prompt = f"""
        Generate symbolic rules from features:
        Features: {json.dumps(features)}
        Context: {json.dumps(context)}
        
        For each rule:
        1. [Condition]: Rule condition
        2. [Implication]: What it implies
        3. [Certainty]: Rule certainty
        4. [Source]: Derivation source
        
        Format as:
        [R1]
        Condition: ...
        Implication: ...
        Certainty: ...
        Source: ...
        """
        
        response = await context["groq_api"].predict(prompt)
        return self._parse_rules(response["answer"])

    async def _neurosymbolic_integration(self, features: List[Dict[str, Any]], rules: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]:
        prompt = f"""
        Integrate neural and symbolic components:
        Features: {json.dumps(features)}
        Rules: {json.dumps(rules)}
        Context: {json.dumps(context)}
        
        For each integration:
        1. [Components]: What is being integrated
        2. [Method]: How they are combined
        3. [Result]: Integration outcome
        4. [Confidence]: Integration confidence
        
        Format as:
        [I1]
        Components: ...
        Method: ...
        Result: ...
        Confidence: ...
        """
        
        response = await context["groq_api"].predict(prompt)
        return self._parse_integration(response["answer"])

    async def _final_inference(self, integrated: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, Any]:
        prompt = f"""
        Draw final conclusions from integrated reasoning:
        Integrated: {json.dumps(integrated)}
        Context: {json.dumps(context)}
        
        Provide:
        1. Final answer/conclusion
        2. Confidence level (0-1)
        3. Explanation of reasoning
        4. Key factors considered
        """
        
        response = await context["groq_api"].predict(prompt)
        return self._parse_conclusion(response["answer"])

    def _parse_features(self, response: str) -> List[Dict[str, Any]]:
        """Parse neural features from response."""
        features = []
        current = None
        
        for line in response.split('\n'):
            line = line.strip()
            if not line:
                continue
                
            if line.startswith('[F'):
                if current:
                    features.append(current)
                current = {
                    "type": "",
                    "value": "",
                    "confidence": 0.0,
                    "relations": []
                }
            elif current:
                if line.startswith('Type:'):
                    current["type"] = line[5:].strip()
                elif line.startswith('Value:'):
                    current["value"] = line[6:].strip()
                elif line.startswith('Confidence:'):
                    try:
                        current["confidence"] = float(line[11:].strip())
                    except:
                        pass
                elif line.startswith('Relations:'):
                    current["relations"] = [r.strip() for r in line[10:].split(',')]
        
        if current:
            features.append(current)
        
        return features

    def _parse_rules(self, response: str) -> List[Dict[str, Any]]:
        """Parse symbolic rules from response."""
        rules = []
        current = None
        
        for line in response.split('\n'):
            line = line.strip()
            if not line:
                continue
                
            if line.startswith('[R'):
                if current:
                    rules.append(current)
                current = {
                    "condition": "",
                    "implication": "",
                    "certainty": 0.0,
                    "source": ""
                }
            elif current:
                if line.startswith('Condition:'):
                    current["condition"] = line[10:].strip()
                elif line.startswith('Implication:'):
                    current["implication"] = line[12:].strip()
                elif line.startswith('Certainty:'):
                    try:
                        current["certainty"] = float(line[10:].strip())
                    except:
                        pass
                elif line.startswith('Source:'):
                    current["source"] = line[7:].strip()
        
        if current:
            rules.append(current)
        
        return rules

    def _parse_integration(self, response: str) -> List[Dict[str, Any]]:
        """Parse integration results from response."""
        integrations = []
        current = None
        
        for line in response.split('\n'):
            line = line.strip()
            if not line:
                continue
                
            if line.startswith('[I'):
                if current:
                    integrations.append(current)
                current = {
                    "components": "",
                    "method": "",
                    "result": "",
                    "confidence": 0.0
                }
            elif current:
                if line.startswith('Components:'):
                    current["components"] = line[11:].strip()
                elif line.startswith('Method:'):
                    current["method"] = line[7:].strip()
                elif line.startswith('Result:'):
                    current["result"] = line[7:].strip()
                elif line.startswith('Confidence:'):
                    try:
                        current["confidence"] = float(line[11:].strip())
                    except:
                        pass
        
        if current:
            integrations.append(current)
        
        return integrations

    def _parse_conclusion(self, response: str) -> Dict[str, Any]:
        """Parse final conclusion from response."""
        conclusion = {
            "answer": "",
            "confidence": 0.0,
            "explanation": "",
            "factors": []
        }
        
        mode = None
        for line in response.split('\n'):
            line = line.strip()
            if not line:
                continue
                
            if line.startswith('Answer:'):
                conclusion["answer"] = line[7:].strip()
            elif line.startswith('Confidence:'):
                try:
                    conclusion["confidence"] = float(line[11:].strip())
                except:
                    conclusion["confidence"] = 0.5
            elif line.startswith('Explanation:'):
                conclusion["explanation"] = line[12:].strip()
            elif line.startswith('Factors:'):
                mode = "factors"
            elif mode == "factors" and line.startswith('- '):
                conclusion["factors"].append(line[2:].strip())
        
        return conclusion