File size: 6,551 Bytes
dcb2a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
"""Bayesian reasoning implementation."""

import logging
from typing import Dict, Any, List
import json
import re
from datetime import datetime

from .base import ReasoningStrategy

class BayesianReasoning(ReasoningStrategy):
    """Implements Bayesian reasoning for probabilistic analysis."""
    
    def __init__(self, prior_weight: float = 0.3):
        self.prior_weight = prior_weight
    
    async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
        try:
            # Generate hypotheses
            hypotheses = await self._generate_hypotheses(query, context)
            
            # Calculate prior probabilities
            priors = await self._calculate_priors(hypotheses, context)
            
            # Update with evidence
            posteriors = await self._update_with_evidence(hypotheses, priors, context)
            
            # Generate final analysis
            analysis = await self._generate_analysis(posteriors, context)
            
            return {
                "success": True,
                "answer": analysis["conclusion"],
                "hypotheses": hypotheses,
                "priors": priors,
                "posteriors": posteriors,
                "confidence": analysis["confidence"],
                "reasoning_path": analysis["reasoning_path"]
            }
        except Exception as e:
            return {"success": False, "error": str(e)}
    
    async def _generate_hypotheses(self, query: str, context: Dict[str, Any]) -> List[Dict[str, Any]]:
        prompt = f"""
        Generate 3-4 hypotheses for this problem:
        Query: {query}
        Context: {json.dumps(context)}
        
        For each hypothesis:
        1. [Statement]: Clear statement of the hypothesis
        2. [Assumptions]: Key assumptions made
        3. [Testability]: How it could be tested/verified
        
        Format as:
        [H1]
        Statement: ...
        Assumptions: ...
        Testability: ...
        """
        
        response = await context["groq_api"].predict(prompt)
        return self._parse_hypotheses(response["answer"])

    async def _calculate_priors(self, hypotheses: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, float]:
        prompt = f"""
        Calculate prior probabilities for these hypotheses:
        Context: {json.dumps(context)}
        
        Hypotheses:
        {json.dumps(hypotheses, indent=2)}
        
        For each hypothesis, estimate its prior probability (0-1) based on:
        1. Alignment with known principles
        2. Historical precedent
        3. Domain expertise
        
        Format: [H1]: 0.XX, [H2]: 0.XX, ...
        """
        
        response = await context["groq_api"].predict(prompt)
        return self._parse_probabilities(response["answer"])

    async def _update_with_evidence(self, hypotheses: List[Dict[str, Any]], priors: Dict[str, float], 
                                  context: Dict[str, Any]) -> Dict[str, float]:
        prompt = f"""
        Update probabilities with available evidence:
        Context: {json.dumps(context)}
        
        Hypotheses and Priors:
        {json.dumps(list(zip(hypotheses, priors.values())), indent=2)}
        
        Consider:
        1. How well each hypothesis explains the evidence
        2. Any new evidence from the context
        3. Potential conflicts or support between hypotheses
        
        Format: [H1]: 0.XX, [H2]: 0.XX, ...
        """
        
        response = await context["groq_api"].predict(prompt)
        return self._parse_probabilities(response["answer"])

    async def _generate_analysis(self, posteriors: Dict[str, float], context: Dict[str, Any]) -> Dict[str, Any]:
        prompt = f"""
        Generate final Bayesian analysis:
        Context: {json.dumps(context)}
        
        Posterior Probabilities:
        {json.dumps(posteriors, indent=2)}
        
        Provide:
        1. Main conclusion based on highest probability hypotheses
        2. Confidence level (0-1)
        3. Key reasoning steps taken
        """
        
        response = await context["groq_api"].predict(prompt)
        return self._parse_analysis(response["answer"])

    def _parse_hypotheses(self, response: str) -> List[Dict[str, Any]]:
        """Parse hypotheses from response."""
        hypotheses = []
        current = None
        
        for line in response.split('\n'):
            line = line.strip()
            if not line:
                continue
            
            if line.startswith('[H'):
                if current:
                    hypotheses.append(current)
                current = {
                    "statement": "",
                    "assumptions": "",
                    "testability": ""
                }
            elif current:
                if line.startswith('Statement:'):
                    current["statement"] = line[10:].strip()
                elif line.startswith('Assumptions:'):
                    current["assumptions"] = line[12:].strip()
                elif line.startswith('Testability:'):
                    current["testability"] = line[12:].strip()
        
        if current:
            hypotheses.append(current)
        
        return hypotheses

    def _parse_probabilities(self, response: str) -> Dict[str, float]:
        """Parse probabilities from response."""
        probs = {}
        pattern = r'\[H(\d+)\]:\s*(0\.\d+)'
        
        for match in re.finditer(pattern, response):
            h_num = int(match.group(1))
            prob = float(match.group(2))
            probs[f"H{h_num}"] = prob
        
        return probs

    def _parse_analysis(self, response: str) -> Dict[str, Any]:
        """Parse analysis from response."""
        lines = response.split('\n')
        analysis = {
            "conclusion": "",
            "confidence": 0.0,
            "reasoning_path": []
        }
        
        for line in lines:
            line = line.strip()
            if not line:
                continue
                
            if line.startswith('Conclusion:'):
                analysis["conclusion"] = line[11:].strip()
            elif line.startswith('Confidence:'):
                try:
                    analysis["confidence"] = float(line[11:].strip())
                except:
                    analysis["confidence"] = 0.5
            elif line.startswith('- '):
                analysis["reasoning_path"].append(line[2:].strip())
        
        return analysis