Spaces:
Sleeping
Sleeping
import streamlit as st | |
from model import load_model, generate_answer,find_context | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
from dataset import dataset_a | |
from sentence_transformers import SentenceTransformer | |
# Load model automatically | |
MODEL_PATH = "namngo/CDS_vit5" | |
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_PATH) | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH) | |
pos_sentences = dataset_a["context"] | |
model2=SentenceTransformer('namngo/CDS_retrival') | |
# Streamlit UI customization | |
st.set_page_config(page_title="Chat Bot Công dân số", page_icon="🤖", layout="wide") | |
st.title("🤖 Chat Bot Công dân số") | |
st.markdown("---") | |
st.success("✅ Model Loaded Successfully") | |
st.sidebar.header("⚙️ Settings") | |
max_length = st.sidebar.slider("Max Answer Length", min_value=50, max_value=500, value=256, step=10) | |
st.subheader("📌 Ask a Question") | |
# context = st.text_area("📝 Context:", height=150) | |
question = st.text_input("❓ Question:") | |
context=find_context(pos_sentences,question,model2) | |
if st.button("🚀 Generate Answer"): | |
answer = generate_answer(model, tokenizer, context, question, max_length=max_length) | |
st.markdown("### 💡 Answer:") | |
st.info(answer) | |