namngo commited on
Commit
5aec1eb
·
verified ·
1 Parent(s): df2f774

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -32
app.py CHANGED
@@ -1,32 +1,32 @@
1
- import streamlit as st
2
- from model import load_model, generate_answer,find_context
3
- from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
4
- from dataset import dataset_a
5
- from sentence_transformers import SentenceTransformer
6
-
7
- # Load model automatically
8
- MODEL_PATH = "D:/Pycharm/Project/Project2/Model/vit5/vit5_base.zip/checkpoint-900"
9
- model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_PATH)
10
- tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
11
- pos_sentences = dataset_a["context"]
12
- model2=SentenceTransformer('D:/Pycharm/Project/Project2/Model/model_retrival/tmp/checkpoint-586')
13
-
14
- # Streamlit UI customization
15
- st.set_page_config(page_title="Chat Bot Công dân số", page_icon="🤖", layout="wide")
16
- st.title("🤖 Chat Bot Công dân số")
17
- st.markdown("---")
18
- st.success("✅ Model Loaded Successfully")
19
-
20
- st.sidebar.header("⚙️ Settings")
21
- max_length = st.sidebar.slider("Max Answer Length", min_value=50, max_value=500, value=256, step=10)
22
-
23
- st.subheader("📌 Ask a Question")
24
- # context = st.text_area("📝 Context:", height=150)
25
- question = st.text_input("❓ Question:")
26
- context=find_context(pos_sentences,question,model2)
27
-
28
-
29
- if st.button("🚀 Generate Answer"):
30
- answer = generate_answer(model, tokenizer, context, question, max_length=max_length)
31
- st.markdown("### 💡 Answer:")
32
- st.info(answer)
 
1
+ import streamlit as st
2
+ from model import load_model, generate_answer,find_context
3
+ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
4
+ from dataset import dataset_a
5
+ from sentence_transformers import SentenceTransformer
6
+
7
+ # Load model automatically
8
+ MODEL_PATH = "namngo/CDS_vit5"
9
+ model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_PATH)
10
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
11
+ pos_sentences = dataset_a["context"]
12
+ model2=SentenceTransformer('namngo/CDS_retrival')
13
+
14
+ # Streamlit UI customization
15
+ st.set_page_config(page_title="Chat Bot Công dân số", page_icon="🤖", layout="wide")
16
+ st.title("🤖 Chat Bot Công dân số")
17
+ st.markdown("---")
18
+ st.success("✅ Model Loaded Successfully")
19
+
20
+ st.sidebar.header("⚙️ Settings")
21
+ max_length = st.sidebar.slider("Max Answer Length", min_value=50, max_value=500, value=256, step=10)
22
+
23
+ st.subheader("📌 Ask a Question")
24
+ # context = st.text_area("📝 Context:", height=150)
25
+ question = st.text_input("❓ Question:")
26
+ context=find_context(pos_sentences,question,model2)
27
+
28
+
29
+ if st.button("🚀 Generate Answer"):
30
+ answer = generate_answer(model, tokenizer, context, question, max_length=max_length)
31
+ st.markdown("### 💡 Answer:")
32
+ st.info(answer)