muryshev's picture
init
57cf043
raw
history blame
14.7 kB
import logging
import re
from logging import Logger
from pathlib import Path
from typing import Dict, List, Tuple
import pandas as pd
from elasticsearch.exceptions import ConnectionError
from natasha import Doc, MorphVocab, NewsEmbedding, NewsMorphTagger, Segmenter
from common.common import (
get_elastic_abbreviation_query,
get_elastic_group_query,
get_elastic_people_query,
get_elastic_query,
get_elastic_rocks_nn_query,
get_elastic_segmentation_query,
)
from common.configuration import Configuration, Query, SummaryChunks
from common.constants import PROMPT, PROMPT_CLASSIFICATION
from components.elastic import create_index_elastic_chunks
from components.elastic.elasticsearch_client import ElasticsearchClient
from components.embedding_extraction import EmbeddingExtractor
from components.nmd.aggregate_answers import aggregate_answers
from components.nmd.faiss_vector_search import FaissVectorSearch
from components.nmd.llm_chunk_search import LLMChunkSearch
from components.nmd.metadata_manager import MetadataManager
from components.nmd.query_classification import QueryClassification
from components.nmd.rancker import DocumentRanking
from components.services.dataset import DatasetService
logger = logging.getLogger(__name__)
class Dispatcher:
def __init__(
self,
embedding_model: EmbeddingExtractor,
config: Configuration,
logger: Logger,
dataset_service: DatasetService
):
self.dataset_service = dataset_service
self.config = config
self.embedder = embedding_model
self.dataset_id = None
self.try_load_default_dataset()
self.llm_search = LLMChunkSearch(config.llm_config, PROMPT, logger)
if self.config.db_config.elastic.use_elastic:
self.elastic_search = ElasticsearchClient(
host=f'{config.db_config.elastic.es_host}',
port=config.db_config.elastic.es_port,
)
self.query_classification = QueryClassification(
config.llm_config, PROMPT_CLASSIFICATION, logger
)
self.segmenter = Segmenter()
self.morph_tagger = NewsMorphTagger(NewsEmbedding())
self.morph_vocab = MorphVocab()
def try_load_default_dataset(self):
default_dataset = self.dataset_service.get_default_dataset()
if default_dataset is not None and default_dataset.id is not None and default_dataset.id != self.dataset_id:
logger.info(f'Reloading dataset {default_dataset.id}')
self.reset_dataset(default_dataset.id)
else:
self.faiss_search = None
self.meta_database = None
def reset_dataset(self, dataset_id: int):
logger.info(f'Reset dataset to dataset_id: {dataset_id}')
data_path = Path(self.config.db_config.faiss.path_to_metadata)
df = pd.read_pickle(data_path / str(dataset_id) / 'dataset.pkl')
logger.info(f'Dataset loaded from {data_path / str(dataset_id) / "dataset.pkl"}')
logger.info(f'Dataset shape: {df.shape}')
self.faiss_search = FaissVectorSearch(self.embedder, df, self.config.db_config)
logger.info(f'Faiss search initialized')
self.meta_database = MetadataManager(df, logger)
logger.info(f'Meta database initialized')
if self.config.db_config.elastic.use_elastic:
create_index_elastic_chunks(df, logger)
logger.info(f'Elastic index created')
self.document_ranking = DocumentRanking(df, self.config)
logger.info(f'Document ranking initialized')
def __vector_search(self, query: str) -> Dict[int, Dict]:
"""
Метод для поиска ближайших векторов по векторной базе Faiss.
Args:
query: Запрос пользователя.
Returns:
возвращает словарь chunks.
"""
query_embeds, scores, indexes = self.faiss_search.search_vectors(query)
if self.config.db_config.ranker.use_ranging:
indexes = self.document_ranking.doc_ranking(query_embeds, scores, indexes)
return self.meta_database.search(indexes)
def __elastic_search(
self, query: str, index_name: str, search_function, size: int
) -> Dict:
"""
Метод для полнотекстового поиска.
Args:
query: Запрос пользователя.
index_name: Наименование индекса.
search_function: Функция запроса, зависит от индекса по которому нужно искать.
size: Количество ближайших соседей, или размер выборки.
Returns:
Возвращает словарь c ответами.
"""
self.elastic_search.set_index(index_name)
return self.elastic_search.search(query=search_function(query), size=size)
@staticmethod
def _get_indexes_full_text_elastic_search(elastic_answer: Dict) -> List:
"""
Метод позволяет получить индексы чанков, которые нашел elastic.
Args:
elastic_answer: Результаты полнотекстового поиска по чанкам.
Returns:
Возвращает список индексов.
"""
answer = []
for answer_dict in elastic_answer:
answer.append(answer_dict['_source']['index'])
return answer
def _lemmatization_text(self, text: str):
doc = Doc(text)
doc.segment(self.segmenter)
doc.tag_morph(self.morph_tagger)
for token in doc.tokens:
token.lemmatize(self.morph_vocab)
return ' '.join([token.lemma for token in doc.tokens])
def _get_abbreviations(self, query: Query):
query_abbreviation = query.query_abbreviation
abbreviations_replaced = query.abbreviations_replaced
try:
if self.config.db_config.elastic.use_elastic:
if (
self.config.db_config.search.abbreviation_search.use_abbreviation_search
):
abbreviation_answer = self.__elastic_search(
query=query.query,
index_name=self.config.db_config.search.abbreviation_search.index_name,
search_function=get_elastic_abbreviation_query,
size=self.config.db_config.search.abbreviation_search.k_neighbors,
)
if len(abbreviation_answer) > 0:
query_lemmatization = self._lemmatization_text(query.query)
for abbreviation in abbreviation_answer:
abbreviation_lemmatization = self._lemmatization_text(
abbreviation['_source']['text'].lower()
)
if abbreviation_lemmatization in query_lemmatization:
query_abbreviation_lemmatization = (
self._lemmatization_text(query_abbreviation)
)
index = re.search(
abbreviation_lemmatization,
query_abbreviation_lemmatization,
).span()[1]
space_index = query_abbreviation.find(' ', index)
if space_index != -1:
query_abbreviation = '{} ({}) {}'.format(
query_abbreviation[:space_index],
abbreviation["_source"]["abbreviation"],
query_abbreviation[space_index:],
)
else:
query_abbreviation = '{} ({})'.format(
query_abbreviation,
abbreviation["_source"]["abbreviation"],
)
except ConnectionError:
logger.info("Connection Error Elasticsearch")
return Query(
query=query.query,
query_abbreviation=query_abbreviation,
abbreviations_replaced=abbreviations_replaced,
)
def search_answer(self, query: Query) -> SummaryChunks:
"""
Метод для поиска чанков отвечающих на вопрос пользователя в разных типах поиска.
Args:
query: Запрос пользователя.
Returns:
Возвращает чанки найденные на запрос пользователя.
"""
self.try_load_default_dataset()
query = self._get_abbreviations(query)
logger.info(f'Start search for {query.query_abbreviation}')
logger.info(f'Use elastic search: {self.config.db_config.elastic.use_elastic}')
answer = {}
if self.config.db_config.search.vector_search.use_vector_search:
logger.info('Start vector search.')
answer['vector_answer'] = self.__vector_search(query.query_abbreviation)
logger.info(f'Vector search found {len(answer["vector_answer"])} chunks')
try:
if self.config.db_config.elastic.use_elastic:
if self.config.db_config.search.people_elastic_search.use_people_search:
logger.info('Start people search.')
people_answer = self.__elastic_search(
query.query,
index_name=self.config.db_config.search.people_elastic_search.index_name,
search_function=get_elastic_people_query,
size=self.config.db_config.search.people_elastic_search.k_neighbors,
)
logger.info(f'People search found {len(people_answer)} chunks')
answer['people_answer'] = people_answer
if self.config.db_config.search.chunks_elastic_search.use_chunks_search:
logger.info('Start full text chunks search.')
chunks_answer = self.__elastic_search(
query.query,
index_name=self.config.db_config.search.chunks_elastic_search.index_name,
search_function=get_elastic_query,
size=self.config.db_config.search.chunks_elastic_search.k_neighbors,
)
indexes = self._get_indexes_full_text_elastic_search(chunks_answer)
chunks_answer = self.meta_database.search(indexes)
logger.info(
f'Full text chunks search found {len(chunks_answer)} chunks'
)
answer['chunks_answer'] = chunks_answer
if self.config.db_config.search.groups_elastic_search.use_groups_search:
logger.info('Start groups search.')
groups_answer = self.__elastic_search(
query.query,
index_name=self.config.db_config.search.groups_elastic_search.index_name,
search_function=get_elastic_group_query,
size=self.config.db_config.search.groups_elastic_search.k_neighbors,
)
if len(groups_answer) != 0:
logger.info(f'Groups search found {len(groups_answer)} chunks')
answer['groups_answer'] = groups_answer
if (
self.config.db_config.search.rocks_nn_elastic_search.use_rocks_nn_search
):
logger.info('Start Rocks NN search.')
rocks_nn_answer = self.__elastic_search(
query.query,
index_name=self.config.db_config.search.rocks_nn_elastic_search.index_name,
search_function=get_elastic_rocks_nn_query,
size=self.config.db_config.search.rocks_nn_elastic_search.k_neighbors,
)
if len(rocks_nn_answer) != 0:
logger.info(
f'Rocks NN search found {len(rocks_nn_answer)} chunks'
)
answer['rocks_nn_answer'] = rocks_nn_answer
if (
self.config.db_config.search.segmentation_elastic_search.use_segmentation_search
):
logger.info('Start Segmentation search.')
segmentation_answer = self.__elastic_search(
query.query,
index_name=self.config.db_config.search.segmentation_elastic_search.index_name,
search_function=get_elastic_segmentation_query,
size=self.config.db_config.search.segmentation_elastic_search.k_neighbors,
)
if len(segmentation_answer) != 0:
logger.info(
f'Segmentation search found {len(segmentation_answer)} chunks'
)
answer['segmentation_answer'] = segmentation_answer
except ConnectionError:
logger.info("Connection Error Elasticsearch")
final_answer = aggregate_answers(**answer)
logger.info(f'Final answer found {len(final_answer)} chunks')
return SummaryChunks(**final_answer)
def llm_classification(self, query: str) -> str:
type_query = self.query_classification.classification(query)
return type_query
def llm_answer(
self, query: str, answer_chunks: SummaryChunks
) -> Tuple[str, str, str, int]:
"""
Метод для поиска правильного ответа с помощью LLM.
Args:
query: Запрос.
answer_chunks: Ответы векторного поиска и elastic.
Returns:
Возвращает исходные chunks из поисков, и chunk который выбрала модель.
"""
prompt = PROMPT
return self.llm_search.llm_chunk_search(query, answer_chunks, prompt)