File size: 14,684 Bytes
57cf043
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import logging
import re
from logging import Logger
from pathlib import Path
from typing import Dict, List, Tuple

import pandas as pd
from elasticsearch.exceptions import ConnectionError
from natasha import Doc, MorphVocab, NewsEmbedding, NewsMorphTagger, Segmenter

from common.common import (
    get_elastic_abbreviation_query,
    get_elastic_group_query,
    get_elastic_people_query,
    get_elastic_query,
    get_elastic_rocks_nn_query,
    get_elastic_segmentation_query,
)
from common.configuration import Configuration, Query, SummaryChunks
from common.constants import PROMPT, PROMPT_CLASSIFICATION
from components.elastic import create_index_elastic_chunks
from components.elastic.elasticsearch_client import ElasticsearchClient
from components.embedding_extraction import EmbeddingExtractor
from components.nmd.aggregate_answers import aggregate_answers
from components.nmd.faiss_vector_search import FaissVectorSearch
from components.nmd.llm_chunk_search import LLMChunkSearch
from components.nmd.metadata_manager import MetadataManager
from components.nmd.query_classification import QueryClassification
from components.nmd.rancker import DocumentRanking

from components.services.dataset import DatasetService

logger = logging.getLogger(__name__)


class Dispatcher:
    def __init__(
        self,
        embedding_model: EmbeddingExtractor,
        config: Configuration,
        logger: Logger,
        dataset_service: DatasetService
    ):
        self.dataset_service = dataset_service
        self.config = config
        self.embedder = embedding_model
        self.dataset_id = None
        
        self.try_load_default_dataset()

        self.llm_search = LLMChunkSearch(config.llm_config, PROMPT, logger)
        if self.config.db_config.elastic.use_elastic:
            self.elastic_search = ElasticsearchClient(
                host=f'{config.db_config.elastic.es_host}',
                port=config.db_config.elastic.es_port,
            )

        self.query_classification = QueryClassification(
            config.llm_config, PROMPT_CLASSIFICATION, logger
        )
        self.segmenter = Segmenter()
        self.morph_tagger = NewsMorphTagger(NewsEmbedding())
        self.morph_vocab = MorphVocab()

    def try_load_default_dataset(self):
        default_dataset = self.dataset_service.get_default_dataset()
        if default_dataset is not None and default_dataset.id is not None and default_dataset.id != self.dataset_id:
            logger.info(f'Reloading dataset {default_dataset.id}')
            self.reset_dataset(default_dataset.id)
        else:
            self.faiss_search = None
            self.meta_database = None
            
    def reset_dataset(self, dataset_id: int):
        logger.info(f'Reset dataset to dataset_id: {dataset_id}')
        data_path = Path(self.config.db_config.faiss.path_to_metadata)
        df = pd.read_pickle(data_path / str(dataset_id) / 'dataset.pkl')
        logger.info(f'Dataset loaded from {data_path / str(dataset_id) / "dataset.pkl"}')
        logger.info(f'Dataset shape: {df.shape}')
        self.faiss_search = FaissVectorSearch(self.embedder, df, self.config.db_config)
        logger.info(f'Faiss search initialized')
        self.meta_database = MetadataManager(df, logger)
        logger.info(f'Meta database initialized')

        if self.config.db_config.elastic.use_elastic:
            create_index_elastic_chunks(df, logger)
            logger.info(f'Elastic index created')
        self.document_ranking = DocumentRanking(df, self.config)
        logger.info(f'Document ranking initialized')

    def __vector_search(self, query: str) -> Dict[int, Dict]:
        """
        Метод для поиска ближайших векторов по векторной базе Faiss.
        Args:
            query: Запрос пользователя.

        Returns:
            возвращает словарь chunks.
        """
        query_embeds, scores, indexes = self.faiss_search.search_vectors(query)
        if self.config.db_config.ranker.use_ranging:
            indexes = self.document_ranking.doc_ranking(query_embeds, scores, indexes)
        return self.meta_database.search(indexes)

    def __elastic_search(
        self, query: str, index_name: str, search_function, size: int
    ) -> Dict:
        """
        Метод для полнотекстового поиска.
        Args:
            query: Запрос пользователя.
            index_name: Наименование индекса.
            search_function: Функция запроса, зависит от индекса по которому нужно искать.
            size: Количество ближайших соседей, или размер выборки.

        Returns:
            Возвращает словарь c ответами.
        """
        self.elastic_search.set_index(index_name)
        return self.elastic_search.search(query=search_function(query), size=size)

    @staticmethod
    def _get_indexes_full_text_elastic_search(elastic_answer: Dict) -> List:
        """
        Метод позволяет получить индексы чанков, которые нашел elastic.
        Args:
            elastic_answer: Результаты полнотекстового поиска по чанкам.

        Returns:
            Возвращает список индексов.
        """
        answer = []
        for answer_dict in elastic_answer:
            answer.append(answer_dict['_source']['index'])
        return answer

    def _lemmatization_text(self, text: str):
        doc = Doc(text)
        doc.segment(self.segmenter)
        doc.tag_morph(self.morph_tagger)

        for token in doc.tokens:
            token.lemmatize(self.morph_vocab)

        return ' '.join([token.lemma for token in doc.tokens])

    def _get_abbreviations(self, query: Query):
        query_abbreviation = query.query_abbreviation
        abbreviations_replaced = query.abbreviations_replaced
        try:
            if self.config.db_config.elastic.use_elastic:
                if (
                    self.config.db_config.search.abbreviation_search.use_abbreviation_search
                ):
                    abbreviation_answer = self.__elastic_search(
                        query=query.query,
                        index_name=self.config.db_config.search.abbreviation_search.index_name,
                        search_function=get_elastic_abbreviation_query,
                        size=self.config.db_config.search.abbreviation_search.k_neighbors,
                    )
                    if len(abbreviation_answer) > 0:
                        query_lemmatization = self._lemmatization_text(query.query)
                        for abbreviation in abbreviation_answer:
                            abbreviation_lemmatization = self._lemmatization_text(
                                abbreviation['_source']['text'].lower()
                            )
                            if abbreviation_lemmatization in query_lemmatization:
                                query_abbreviation_lemmatization = (
                                    self._lemmatization_text(query_abbreviation)
                                )
                                index = re.search(
                                    abbreviation_lemmatization,
                                    query_abbreviation_lemmatization,
                                ).span()[1]
                                space_index = query_abbreviation.find(' ', index)
                                if space_index != -1:
                                    query_abbreviation = '{} ({}) {}'.format(
                                        query_abbreviation[:space_index],
                                        abbreviation["_source"]["abbreviation"],
                                        query_abbreviation[space_index:],
                                    )
                                else:
                                    query_abbreviation = '{} ({})'.format(
                                        query_abbreviation,
                                        abbreviation["_source"]["abbreviation"],
                                    )
        except ConnectionError:
            logger.info("Connection Error Elasticsearch")

        return Query(
            query=query.query,
            query_abbreviation=query_abbreviation,
            abbreviations_replaced=abbreviations_replaced,
        )

    def search_answer(self, query: Query) -> SummaryChunks:
        """
        Метод для поиска чанков отвечающих на вопрос пользователя в разных типах поиска.
        Args:
            query: Запрос пользователя.

        Returns:
            Возвращает чанки найденные на запрос пользователя.
        """
        self.try_load_default_dataset()
        query = self._get_abbreviations(query)

        logger.info(f'Start search for {query.query_abbreviation}')
        logger.info(f'Use elastic search: {self.config.db_config.elastic.use_elastic}')

        answer = {}
        if self.config.db_config.search.vector_search.use_vector_search:
            logger.info('Start vector search.')
            answer['vector_answer'] = self.__vector_search(query.query_abbreviation)
            logger.info(f'Vector search found {len(answer["vector_answer"])} chunks')

        try:
            if self.config.db_config.elastic.use_elastic:
                if self.config.db_config.search.people_elastic_search.use_people_search:
                    logger.info('Start people search.')
                    people_answer = self.__elastic_search(
                        query.query,
                        index_name=self.config.db_config.search.people_elastic_search.index_name,
                        search_function=get_elastic_people_query,
                        size=self.config.db_config.search.people_elastic_search.k_neighbors,
                    )
                    logger.info(f'People search found {len(people_answer)} chunks')
                    answer['people_answer'] = people_answer

                if self.config.db_config.search.chunks_elastic_search.use_chunks_search:
                    logger.info('Start full text chunks search.')
                    chunks_answer = self.__elastic_search(
                        query.query,
                        index_name=self.config.db_config.search.chunks_elastic_search.index_name,
                        search_function=get_elastic_query,
                        size=self.config.db_config.search.chunks_elastic_search.k_neighbors,
                    )
                    indexes = self._get_indexes_full_text_elastic_search(chunks_answer)
                    chunks_answer = self.meta_database.search(indexes)
                    logger.info(
                        f'Full text chunks search found {len(chunks_answer)} chunks'
                    )
                    answer['chunks_answer'] = chunks_answer

                if self.config.db_config.search.groups_elastic_search.use_groups_search:
                    logger.info('Start groups search.')
                    groups_answer = self.__elastic_search(
                        query.query,
                        index_name=self.config.db_config.search.groups_elastic_search.index_name,
                        search_function=get_elastic_group_query,
                        size=self.config.db_config.search.groups_elastic_search.k_neighbors,
                    )
                    if len(groups_answer) != 0:
                        logger.info(f'Groups search found {len(groups_answer)} chunks')
                        answer['groups_answer'] = groups_answer

                if (
                    self.config.db_config.search.rocks_nn_elastic_search.use_rocks_nn_search
                ):
                    logger.info('Start Rocks NN search.')
                    rocks_nn_answer = self.__elastic_search(
                        query.query,
                        index_name=self.config.db_config.search.rocks_nn_elastic_search.index_name,
                        search_function=get_elastic_rocks_nn_query,
                        size=self.config.db_config.search.rocks_nn_elastic_search.k_neighbors,
                    )
                    if len(rocks_nn_answer) != 0:
                        logger.info(
                            f'Rocks NN search found {len(rocks_nn_answer)} chunks'
                        )
                        answer['rocks_nn_answer'] = rocks_nn_answer

                if (
                    self.config.db_config.search.segmentation_elastic_search.use_segmentation_search
                ):
                    logger.info('Start Segmentation search.')
                    segmentation_answer = self.__elastic_search(
                        query.query,
                        index_name=self.config.db_config.search.segmentation_elastic_search.index_name,
                        search_function=get_elastic_segmentation_query,
                        size=self.config.db_config.search.segmentation_elastic_search.k_neighbors,
                    )
                    if len(segmentation_answer) != 0:
                        logger.info(
                            f'Segmentation search found {len(segmentation_answer)} chunks'
                        )
                        answer['segmentation_answer'] = segmentation_answer

        except ConnectionError:
            logger.info("Connection Error Elasticsearch")

        final_answer = aggregate_answers(**answer)
        logger.info(f'Final answer found {len(final_answer)} chunks')
        return SummaryChunks(**final_answer)

    def llm_classification(self, query: str) -> str:
        type_query = self.query_classification.classification(query)
        return type_query

    def llm_answer(
        self, query: str, answer_chunks: SummaryChunks
    ) -> Tuple[str, str, str, int]:
        """
        Метод для поиска правильного ответа с помощью LLM.
        Args:
            query: Запрос.
            answer_chunks: Ответы векторного поиска и elastic.

        Returns:
            Возвращает исходные chunks из поисков, и chunk который выбрала модель.
        """
        prompt = PROMPT
        return self.llm_search.llm_chunk_search(query, answer_chunks, prompt)