File size: 13,084 Bytes
0dffae9
57cf043
 
4550b93
57cf043
86c402d
744a170
86c402d
 
744a170
 
 
 
86c402d
 
744a170
308de05
744a170
57cf043
 
 
fd3c8b9
57cf043
 
 
86c402d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57cf043
 
0dffae9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e474712
 
744a170
e474712
744a170
e474712
 
744a170
 
 
 
 
e474712
 
383ba14
 
 
 
 
 
 
e474712
 
 
 
 
383ba14
 
 
e474712
 
 
 
 
 
 
 
 
383ba14
 
 
 
 
 
 
e474712
 
 
 
 
 
 
 
 
 
 
0dffae9
 
 
 
fd485d9
 
0dffae9
 
 
4a37130
383ba14
 
 
 
 
 
 
 
 
 
 
1e5d06f
383ba14
1e5d06f
 
 
 
 
4a37130
 
 
308de05
e474712
4a37130
 
 
 
 
744a170
 
 
 
 
 
 
4a37130
 
4550b93
 
744a170
4550b93
4a37130
 
0dffae9
4a37130
 
744a170
4a37130
 
 
 
 
 
 
 
 
 
 
 
0dffae9
4a37130
 
 
 
 
0dffae9
 
 
 
 
 
 
 
 
 
 
fd485d9
4550b93
0dffae9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f462bc
 
 
 
 
 
0dffae9
fd485d9
0dffae9
6f462bc
0dffae9
 
 
 
57cf043
 
86c402d
 
 
 
 
 
 
 
fd485d9
86c402d
57cf043
 
 
86c402d
57cf043
86c402d
 
 
 
 
 
 
 
57cf043
86c402d
308de05
 
 
 
 
 
fd485d9
 
 
86c402d
fd485d9
86c402d
 
 
fd485d9
744a170
 
 
 
86c402d
744a170
86c402d
 
 
 
 
57cf043
86c402d
 
fd485d9
57cf043
 
86c402d
 
 
 
 
57cf043
 
 
86c402d
 
 
0dffae9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import json
import logging
import os
from typing import Annotated, AsyncGenerator, List, Optional

from fastapi import APIRouter, Depends, HTTPException
from fastapi.responses import StreamingResponse

import common.dependencies as DI
from common import auth
from common.configuration import Configuration
from components.llm.common import (ChatRequest, LlmParams, LlmPredictParams,
                                   Message)
from components.llm.deepinfra_api import DeepInfraApi
from components.llm.utils import append_llm_response_to_history
from components.services.dataset import DatasetService
from components.services.dialogue import DialogueService, QEResult
from components.services.entity import EntityService
from components.services.llm_config import LLMConfigService
from components.services.llm_prompt import LlmPromptService

router = APIRouter(prefix='/llm', tags=['LLM chat'])
logger = logging.getLogger(__name__)

conf = DI.get_config()
llm_params = LlmParams(
    **{
        "url": conf.llm_config.base_url,
        "model": conf.llm_config.model,
        "tokenizer": "unsloth/Llama-3.3-70B-Instruct",
        "type": "deepinfra",
        "default": True,
        "predict_params": LlmPredictParams(
            temperature=0.15,
            top_p=0.95,
            min_p=0.05,
            seed=42,
            repetition_penalty=1.2,
            presence_penalty=1.1,
            n_predict=2000,
        ),
        "api_key": os.environ.get(conf.llm_config.api_key_env),
        "context_length": 128000,
    }
)
# TODO: унести в DI
llm_api = DeepInfraApi(params=llm_params)

# TODO: Вынести
def get_last_user_message(chat_request: ChatRequest) -> Optional[Message]:
    return next(
        (
            msg
            for msg in reversed(chat_request.history)
            if msg.role == "user"
            and (msg.searchResults is None or not msg.searchResults)
        ),
        None,
    )

def insert_search_results_to_message(
    chat_request: ChatRequest, new_content: str
) -> bool:
    for msg in reversed(chat_request.history):
        if msg.role == "user" and (
            msg.searchResults is None or not msg.searchResults
        ):
            msg.content = new_content
            return True
    return False

def try_insert_search_results(
    chat_request: ChatRequest, search_results: List[str], entities: List[List[str]]
) -> bool:
    i = 0
    for msg in reversed(chat_request.history):
        if msg.role == "user" and not msg.searchResults:
            msg.searchResults = search_results[i]
            msg.searchEntities = entities[i]
            i += 1
    if i == len(search_results):
        return True
    return False

def try_insert_reasoning(
    chat_request: ChatRequest, reasoning: str
):
    for msg in reversed(chat_request.history):
        if msg.role == "user":
            msg.reasoning = reasoning

def collapse_history_to_first_message(chat_request: ChatRequest) -> ChatRequest:
    """
    Сворачивает историю в первое сообщение и возвращает новый объект ChatRequest.
    Формат:
    role: текст сообщения
    <reasoning>[Источник] - текст</reasoning>
    <search-results>[Источник] - текст</search-results>
    
    """
    if not chat_request.history:
        return ChatRequest(history=[])

    # Собираем историю в одну строку
    collapsed_content = []
    for msg in chat_request.history:
        # Добавляем текст сообщения с указанием роли
        if msg.content.strip():
            collapsed_content.append(f"{msg.role.strip()}: {msg.content.strip()}")
        # Добавляем reasoning, если есть
        if msg.reasoning.strip():
            collapsed_content.append(f"<reasoning>{msg.reasoning}</reasoning>")
        # Добавляем search-results, если они есть
        if msg.searchResults.strip():
            collapsed_content.append(f"<search-results>{msg.searchResults}</search-results>")

    # Формируем финальный текст с переносами строк
    new_content = "\n".join(collapsed_content)

    # Создаем новое сообщение и новый объект ChatRequest
    new_message = Message(
        role='user',
        content=new_content,
        searchResults=''
    )
    return ChatRequest(history=[new_message])
        
async def sse_generator(request: ChatRequest, llm_api: DeepInfraApi, system_prompt: str, 
                        predict_params: LlmPredictParams,
                        dataset_service: DatasetService, 
                        entity_service: EntityService,
                        dialogue_service: DialogueService) -> AsyncGenerator[str, None]:
    """
    Генератор для стриминга ответа LLM через SSE.
    """
    try:
        qe_result = await dialogue_service.get_qe_result(request.history)
        try_insert_reasoning(request, qe_result.debug_message)
        
        # qe_debug_event = {
        #     "event": "debug",
        #     "data": {
        #         "text": qe_result.debug_message
        #     }
        # }
        # yield f"data: {json.dumps(qe_debug_event, ensure_ascii=False)}\n\n"
        
        qe_event = {
            "event": "reasoning",
            "data": {
                "text": qe_result.debug_message
            }
        }
        yield f"data: {json.dumps(qe_event, ensure_ascii=False)}\n\n"
    except Exception as e:
        logger.error(f"Error in SSE chat stream while dialogue_service.get_qe_result: {str(e)}", stack_info=True)
        yield "data: {\"event\": \"error\", \"data\":\""+str(e)+"\" }\n\n"
        qe_result = dialogue_service.get_qe_result_from_chat(request.history)
    
    try:   
        if qe_result.use_search and qe_result.search_query is not None:
            dataset = dataset_service.get_current_dataset()
            if dataset is None:
                raise HTTPException(status_code=400, detail="Dataset not found")
            previous_entities = [msg.searchEntities for msg in request.history if msg.searchEntities is not None]
            previous_entities, chunk_ids, scores = entity_service.search_similar(qe_result.search_query, 
                                                                                 dataset.id, previous_entities)
            text_chunks = entity_service.build_text(chunk_ids, scores)
            all_text_chunks = [text_chunks] + [entity_service.build_text(entities) for entities in previous_entities]
            all_entities = [chunk_ids] + previous_entities
            
            search_results_event = {
                "event": "search_results",
                "data": {
                    "text": text_chunks, 
                    "ids": chunk_ids
                }
            }
            yield f"data: {json.dumps(search_results_event, ensure_ascii=False)}\n\n"

            # new_message = f'<search-results>\n{text_chunks}\n</search-results>\n{last_query.content}'
            
            try_insert_search_results(request, all_text_chunks, all_entities)
    except Exception as e:
        logger.error(f"Error in SSE chat stream while searching: {str(e)}", stack_info=True)
        yield "data: {\"event\": \"error\", \"data\":\""+str(e)+"\" }\n\n"
    try:          
        # Сворачиваем историю в первое сообщение
        collapsed_request = collapse_history_to_first_message(request)
                    
        # Стриминг токенов ответа
        async for token in llm_api.get_predict_chat_generator(collapsed_request, system_prompt, predict_params):
            token_event = {"event": "token", "data": token}
            # logger.info(f"Streaming token: {token}")
            yield f"data: {json.dumps(token_event, ensure_ascii=False)}\n\n"

        # Финальное событие
        yield "data: {\"event\": \"done\"}\n\n"
    except Exception as e:
        logger.error(f"Error in SSE chat stream while generating response: {str(e)}", stack_info=True)
        yield "data: {\"event\": \"error\", \"data\":\""+str(e)+"\" }\n\n"
    

@router.post("/chat/stream")
async def chat_stream(
    request: ChatRequest,
    config: Annotated[Configuration, Depends(DI.get_config)],
    llm_api: Annotated[DeepInfraApi, Depends(DI.get_llm_service)],
    prompt_service: Annotated[LlmPromptService, Depends(DI.get_llm_prompt_service)],
    llm_config_service: Annotated[LLMConfigService, Depends(DI.get_llm_config_service)],
    entity_service: Annotated[EntityService, Depends(DI.get_entity_service)],
    dataset_service: Annotated[DatasetService, Depends(DI.get_dataset_service)],
    dialogue_service: Annotated[DialogueService, Depends(DI.get_dialogue_service)],
    current_user: Annotated[any, Depends(auth.get_current_user)]
):
    try:
        p = llm_config_service.get_default()
        system_prompt = prompt_service.get_default()

        predict_params = LlmPredictParams(
            temperature=p.temperature,
            top_p=p.top_p,
            min_p=p.min_p,
            seed=p.seed,
            frequency_penalty=p.frequency_penalty,
            presence_penalty=p.presence_penalty,
            n_predict=p.n_predict,
            stop=[],
        )

        headers = {
            "Content-Type": "text/event-stream",
            "Cache-Control": "no-cache",
            "Connection": "keep-alive",
            "Access-Control-Allow-Origin": "*",
        }
        return StreamingResponse(
            sse_generator(request, llm_api, system_prompt.text, predict_params, dataset_service, entity_service, dialogue_service),
            media_type="text/event-stream",
            headers=headers
        )
    except Exception as e:
        logger.error(f"Error in SSE chat stream: {str(e)}", stack_info=True)
        raise HTTPException(status_code=500, detail=str(e))

@router.post("/chat")
async def chat(
    request: ChatRequest,
    config: Annotated[Configuration, Depends(DI.get_config)],
    llm_api: Annotated[DeepInfraApi, Depends(DI.get_llm_service)],
    prompt_service: Annotated[LlmPromptService, Depends(DI.get_llm_prompt_service)],
    llm_config_service: Annotated[LLMConfigService, Depends(DI.get_llm_config_service)],
    entity_service: Annotated[EntityService, Depends(DI.get_entity_service)],
    dataset_service: Annotated[DatasetService, Depends(DI.get_dataset_service)],
    dialogue_service: Annotated[DialogueService, Depends(DI.get_dialogue_service)],
):
    try:
        p = llm_config_service.get_default()
        system_prompt = prompt_service.get_default()

        predict_params = LlmPredictParams(
            temperature=p.temperature,
            top_p=p.top_p,
            min_p=p.min_p,
            seed=p.seed,
            frequency_penalty=p.frequency_penalty,
            presence_penalty=p.presence_penalty,
            n_predict=p.n_predict,
            stop=[],
        )

        try:
            qe_result = await dialogue_service.get_qe_result(request.history)
        except Exception as e:
            logger.error(f"Error in chat while dialogue_service.get_qe_result: {str(e)}", stack_info=True)
            qe_result = dialogue_service.get_qe_result_from_chat(request.history)
        
        last_message = get_last_user_message(request)

        logger.info(f"qe_result: {qe_result}")

        if qe_result.use_search and qe_result.search_query is not None:
            dataset = dataset_service.get_current_dataset()
            if dataset is None:
                raise HTTPException(status_code=400, detail="Dataset not found")
            logger.info(f"qe_result.search_query: {qe_result.search_query}")
            previous_entities = [msg.searchEntities for msg in request.history]
            previous_entities, chunk_ids, scores = entity_service.search_similar(
                qe_result.search_query, dataset.id, previous_entities
            )
            
            chunks = entity_service.chunk_repository.get_entities_by_ids(chunk_ids)
            
            logger.info(f"chunk_ids: {chunk_ids[:3]}...{chunk_ids[-3:]}")
            logger.info(f"scores: {scores[:3]}...{scores[-3:]}")
            
            text_chunks = entity_service.build_text(chunks, scores)
            
            logger.info(f"text_chunks: {text_chunks[:3]}...{text_chunks[-3:]}")

            new_message = f'{last_message.content} /n<search-results>/n{text_chunks}/n</search-results>'
            insert_search_results_to_message(request, new_message)
            
        logger.info(f"request: {request}")

        response = await llm_api.predict_chat_stream(
            request, system_prompt.text, predict_params
        )
        result = append_llm_response_to_history(request, response)
        return result
    except Exception as e:
        logger.error(
            f"Error processing LLM request: {str(e)}", stack_info=True, stacklevel=10
        )
        return {"error": str(e)}