Spaces:
Sleeping
Sleeping
update
Browse files- components/llm/common.py +1 -1
- components/llm/deepinfra_api.py +3 -3
- components/llm/utils.py +2 -2
- components/services/dataset.py +0 -1
- config_dev.yaml +1 -1
- routes/llm.py +55 -6
components/llm/common.py
CHANGED
@@ -72,7 +72,7 @@ class LlmApi:
|
|
72 |
class Message(BaseModel):
|
73 |
role: str
|
74 |
content: str
|
75 |
-
searchResults:
|
76 |
|
77 |
class ChatRequest(BaseModel):
|
78 |
history: List[Message]
|
|
|
72 |
class Message(BaseModel):
|
73 |
role: str
|
74 |
content: str
|
75 |
+
searchResults: str
|
76 |
|
77 |
class ChatRequest(BaseModel):
|
78 |
history: List[Message]
|
components/llm/deepinfra_api.py
CHANGED
@@ -310,8 +310,8 @@ class DeepInfraApi(LlmApi):
|
|
310 |
Yields:
|
311 |
str: Токены ответа LLM.
|
312 |
"""
|
313 |
-
|
314 |
-
async with httpx.AsyncClient() as client:
|
315 |
request_data = self.create_chat_request(request, system_prompt, params)
|
316 |
request_data["stream"] = True
|
317 |
|
@@ -319,7 +319,7 @@ class DeepInfraApi(LlmApi):
|
|
319 |
"POST",
|
320 |
f"{self.params.url}/v1/openai/chat/completions",
|
321 |
json=request_data,
|
322 |
-
headers=super().create_headers()
|
323 |
) as response:
|
324 |
if response.status_code != 200:
|
325 |
error_content = await response.aread()
|
|
|
310 |
Yields:
|
311 |
str: Токены ответа LLM.
|
312 |
"""
|
313 |
+
timeout = httpx.Timeout(connect=30.0, read=None, pool=None, write=None, timeout=None)
|
314 |
+
async with httpx.AsyncClient(timeout=timeout) as client:
|
315 |
request_data = self.create_chat_request(request, system_prompt, params)
|
316 |
request_data["stream"] = True
|
317 |
|
|
|
319 |
"POST",
|
320 |
f"{self.params.url}/v1/openai/chat/completions",
|
321 |
json=request_data,
|
322 |
+
headers=super().create_headers(),
|
323 |
) as response:
|
324 |
if response.status_code != 200:
|
325 |
error_content = await response.aread()
|
components/llm/utils.py
CHANGED
@@ -19,7 +19,7 @@ def convert_to_openai_format(request: ChatRequest, system_prompt: str) -> List[D
|
|
19 |
for message in request.history:
|
20 |
content = message.content
|
21 |
if message.searchResults:
|
22 |
-
search_results = "\n"
|
23 |
content += f"\n<search-results>\n{search_results}\n</search-results>"
|
24 |
|
25 |
openai_history.append({
|
@@ -45,7 +45,7 @@ def append_llm_response_to_history(history: ChatRequest, llm_response: str) -> C
|
|
45 |
assistant_message = Message(
|
46 |
role="assistant",
|
47 |
content=llm_response,
|
48 |
-
searchResults=
|
49 |
)
|
50 |
|
51 |
# Добавляем сообщение в историю
|
|
|
19 |
for message in request.history:
|
20 |
content = message.content
|
21 |
if message.searchResults:
|
22 |
+
search_results = "\n" + message.searchResults
|
23 |
content += f"\n<search-results>\n{search_results}\n</search-results>"
|
24 |
|
25 |
openai_history.append({
|
|
|
45 |
assistant_message = Message(
|
46 |
role="assistant",
|
47 |
content=llm_response,
|
48 |
+
searchResults="" # Пустой список, если searchResults не предоставлены
|
49 |
)
|
50 |
|
51 |
# Добавляем сообщение в историю
|
components/services/dataset.py
CHANGED
@@ -586,7 +586,6 @@ class DatasetService:
|
|
586 |
|
587 |
def get_current_dataset(self) -> Dataset | None:
|
588 |
with self.db() as session:
|
589 |
-
print(session)
|
590 |
result = session.query(Dataset).filter(Dataset.is_active == True).first()
|
591 |
return result
|
592 |
|
|
|
586 |
|
587 |
def get_current_dataset(self) -> Dataset | None:
|
588 |
with self.db() as session:
|
|
|
589 |
result = session.query(Dataset).filter(Dataset.is_active == True).first()
|
590 |
return result
|
591 |
|
config_dev.yaml
CHANGED
@@ -67,7 +67,7 @@ bd:
|
|
67 |
llm:
|
68 |
base_url: !ENV ${LLM_BASE_URL:https://api.deepinfra.com}
|
69 |
api_key_env: !ENV ${API_KEY_ENV:DEEPINFRA_API_KEY}
|
70 |
-
model: !ENV ${MODEL_NAME:meta-llama/Llama-3.3-70B-Instruct
|
71 |
tokenizer_name: !ENV ${TOKENIZER_NAME:unsloth/Llama-3.3-70B-Instruct}
|
72 |
temperature: 0.14
|
73 |
top_p: 0.95
|
|
|
67 |
llm:
|
68 |
base_url: !ENV ${LLM_BASE_URL:https://api.deepinfra.com}
|
69 |
api_key_env: !ENV ${API_KEY_ENV:DEEPINFRA_API_KEY}
|
70 |
+
model: !ENV ${MODEL_NAME:meta-llama/Llama-3.3-70B-Instruct}
|
71 |
tokenizer_name: !ENV ${TOKENIZER_NAME:unsloth/Llama-3.3-70B-Instruct}
|
72 |
temperature: 0.14
|
73 |
top_p: 0.95
|
routes/llm.py
CHANGED
@@ -67,6 +67,46 @@ def insert_search_results_to_message(
|
|
67 |
msg.content = new_content
|
68 |
return True
|
69 |
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
async def sse_generator(request: ChatRequest, llm_api: DeepInfraApi, system_prompt: str,
|
72 |
predict_params: LlmPredictParams,
|
@@ -75,9 +115,13 @@ async def sse_generator(request: ChatRequest, llm_api: DeepInfraApi, system_prom
|
|
75 |
"""
|
76 |
Генератор для стриминга ответа LLM через SSE.
|
77 |
"""
|
|
|
78 |
# Обработка поиска
|
79 |
last_query = get_last_user_message(request)
|
|
|
|
|
80 |
if last_query:
|
|
|
81 |
dataset = dataset_service.get_current_dataset()
|
82 |
if dataset is None:
|
83 |
raise HTTPException(status_code=400, detail="Dataset not found")
|
@@ -86,17 +130,22 @@ async def sse_generator(request: ChatRequest, llm_api: DeepInfraApi, system_prom
|
|
86 |
text_chunks = entity_service.build_text(chunks, scores)
|
87 |
search_results_event = {
|
88 |
"event": "search_results",
|
89 |
-
"data": f"
|
90 |
}
|
91 |
yield f"data: {json.dumps(search_results_event, ensure_ascii=False)}\n\n"
|
92 |
|
93 |
-
new_message = f'
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
96 |
# Стриминг токенов ответа
|
97 |
-
async for token in llm_api.get_predict_chat_generator(
|
98 |
token_event = {"event": "token", "data": token}
|
99 |
-
logger.info(f"Streaming token: {token}")
|
100 |
yield f"data: {json.dumps(token_event, ensure_ascii=False)}\n\n"
|
101 |
|
102 |
# Финальное событие
|
|
|
67 |
msg.content = new_content
|
68 |
return True
|
69 |
return False
|
70 |
+
|
71 |
+
def try_insert_search_results(
|
72 |
+
chat_request: ChatRequest, search_results: str
|
73 |
+
) -> bool:
|
74 |
+
for msg in reversed(chat_request.history):
|
75 |
+
if msg.role == "user" and not msg.searchResults:
|
76 |
+
msg.searchResults = search_results
|
77 |
+
return True
|
78 |
+
return False
|
79 |
+
|
80 |
+
def collapse_history_to_first_message(chat_request: ChatRequest) -> ChatRequest:
|
81 |
+
"""
|
82 |
+
Сворачивает историю в первое сообщение и возвращает новый объект ChatRequest.
|
83 |
+
Формат:
|
84 |
+
<search-results>[Источник] - текст</search-results>
|
85 |
+
role: текст сообщения
|
86 |
+
"""
|
87 |
+
if not chat_request.history:
|
88 |
+
return ChatRequest(history=[])
|
89 |
+
|
90 |
+
# Собираем историю в одну строку
|
91 |
+
collapsed_content = []
|
92 |
+
for msg in chat_request.history:
|
93 |
+
# Добавляем search-results, если они есть
|
94 |
+
if msg.searchResults:
|
95 |
+
collapsed_content.append(f"<search-results>{msg.searchResults}</search-results>")
|
96 |
+
# Добавляем текст сообщения с указанием роли
|
97 |
+
if msg.content.strip():
|
98 |
+
collapsed_content.append(f"{msg.role}: {msg.content.strip()}")
|
99 |
+
|
100 |
+
# Формируем финальный текст с переносами строк
|
101 |
+
new_content = "\n".join(collapsed_content)
|
102 |
+
|
103 |
+
# Создаем новое сообщение и новый объект ChatRequest
|
104 |
+
new_message = Message(
|
105 |
+
role='user',
|
106 |
+
content=new_content,
|
107 |
+
searchResults=''
|
108 |
+
)
|
109 |
+
return ChatRequest(history=[new_message])
|
110 |
|
111 |
async def sse_generator(request: ChatRequest, llm_api: DeepInfraApi, system_prompt: str,
|
112 |
predict_params: LlmPredictParams,
|
|
|
115 |
"""
|
116 |
Генератор для стриминга ответа LLM через SSE.
|
117 |
"""
|
118 |
+
|
119 |
# Обработка поиска
|
120 |
last_query = get_last_user_message(request)
|
121 |
+
|
122 |
+
|
123 |
if last_query:
|
124 |
+
|
125 |
dataset = dataset_service.get_current_dataset()
|
126 |
if dataset is None:
|
127 |
raise HTTPException(status_code=400, detail="Dataset not found")
|
|
|
130 |
text_chunks = entity_service.build_text(chunks, scores)
|
131 |
search_results_event = {
|
132 |
"event": "search_results",
|
133 |
+
"data": f"{text_chunks}"
|
134 |
}
|
135 |
yield f"data: {json.dumps(search_results_event, ensure_ascii=False)}\n\n"
|
136 |
|
137 |
+
# new_message = f'<search-results>\n{text_chunks}\n</search-results>\n{last_query.content}'
|
138 |
+
|
139 |
+
try_insert_search_results(request, text_chunks)
|
140 |
+
|
141 |
+
|
142 |
+
# Сворачиваем историю в первое сообщение
|
143 |
+
collapsed_request = collapse_history_to_first_message(request)
|
144 |
+
|
145 |
# Стриминг токенов ответа
|
146 |
+
async for token in llm_api.get_predict_chat_generator(collapsed_request, system_prompt, predict_params):
|
147 |
token_event = {"event": "token", "data": token}
|
148 |
+
# logger.info(f"Streaming token: {token}")
|
149 |
yield f"data: {json.dumps(token_event, ensure_ascii=False)}\n\n"
|
150 |
|
151 |
# Финальное событие
|