Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,14 @@
|
|
1 |
import torch
|
2 |
from diffusers import AutoencoderKLWan, WanPipeline, UniPCMultistepScheduler
|
3 |
from diffusers.utils import export_to_video
|
4 |
-
from diffusers.loaders.lora_conversion_utils import
|
5 |
import gradio as gr
|
6 |
import tempfile
|
7 |
import os
|
8 |
import spaces
|
9 |
from huggingface_hub import hf_hub_download
|
10 |
import logging # For better logging
|
|
|
11 |
|
12 |
# --- Global Model Loading & LoRA Handling ---
|
13 |
MODEL_ID = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
|
@@ -18,245 +19,175 @@ LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"
|
|
18 |
logging.basicConfig(level=logging.INFO)
|
19 |
logger = logging.getLogger(__name__)
|
20 |
|
21 |
-
|
22 |
-
MANUAL_PATCHES_STORE = {}
|
23 |
|
24 |
def _custom_convert_non_diffusers_wan_lora_to_diffusers(state_dict):
|
25 |
global MANUAL_PATCHES_STORE
|
26 |
-
MANUAL_PATCHES_STORE = {} #
|
27 |
-
|
28 |
unhandled_keys = []
|
29 |
|
30 |
-
|
31 |
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
for k, v in state_dict.items():
|
|
|
34 |
if k.startswith("diffusion_model."):
|
35 |
-
|
36 |
elif k.startswith("difusion_model."): # Handle potential typo
|
37 |
-
|
|
|
38 |
else:
|
39 |
-
unhandled_keys.append(
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
if
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
diff_w_key_proc = f"blocks.{i}.cross_attn.{o_lora}.diff"
|
119 |
-
|
120 |
-
if lora_down_key_proc in processed_state_dict and lora_up_key_proc in processed_state_dict:
|
121 |
-
peft_state_dict[f"transformer.blocks.{i}.attn2.{c_diffusers}.lora_A.weight"] = processed_state_dict[lora_down_key_proc]
|
122 |
-
peft_state_dict[f"transformer.blocks.{i}.attn2.{c_diffusers}.lora_B.weight"] = processed_state_dict[lora_up_key_proc]
|
123 |
-
handled_original_keys.add(f"diffusion_model.{lora_down_key_proc}")
|
124 |
-
handled_original_keys.add(f"diffusion_model.{lora_up_key_proc}")
|
125 |
-
if diff_b_key_proc in processed_state_dict:
|
126 |
-
target_bias_key = f"transformer.blocks.{i}.attn2.{c_diffusers}.bias"
|
127 |
-
MANUAL_PATCHES_STORE[target_bias_key] = ("diff_b", processed_state_dict[diff_b_key_proc])
|
128 |
-
handled_original_keys.add(f"diffusion_model.{diff_b_key_proc}")
|
129 |
-
if diff_w_key_proc in processed_state_dict:
|
130 |
-
target_weight_key = f"transformer.blocks.{i}.attn2.{c_diffusers}.weight"
|
131 |
-
MANUAL_PATCHES_STORE[target_weight_key] = ("diff", processed_state_dict[diff_w_key_proc])
|
132 |
-
handled_original_keys.add(f"diffusion_model.{diff_w_key_proc}")
|
133 |
-
|
134 |
-
# FFN
|
135 |
-
for o_lora_suffix, c_diffusers_path in zip([".0", ".2"], ["net.0.proj", "net.2"]):
|
136 |
-
lora_down_key_proc = f"blocks.{i}.ffn{o_lora_suffix}.lora_down.weight"
|
137 |
-
lora_up_key_proc = f"blocks.{i}.ffn{o_lora_suffix}.lora_up.weight"
|
138 |
-
diff_b_key_proc = f"blocks.{i}.ffn{o_lora_suffix}.diff_b"
|
139 |
-
diff_w_key_proc = f"blocks.{i}.ffn{o_lora_suffix}.diff" # Assuming .diff for weight
|
140 |
-
|
141 |
-
if lora_down_key_proc in processed_state_dict and lora_up_key_proc in processed_state_dict:
|
142 |
-
peft_state_dict[f"transformer.blocks.{i}.ffn.{c_diffusers_path}.lora_A.weight"] = processed_state_dict[lora_down_key_proc]
|
143 |
-
peft_state_dict[f"transformer.blocks.{i}.ffn.{c_diffusers_path}.lora_B.weight"] = processed_state_dict[lora_up_key_proc]
|
144 |
-
handled_original_keys.add(f"diffusion_model.{lora_down_key_proc}")
|
145 |
-
handled_original_keys.add(f"diffusion_model.{lora_up_key_proc}")
|
146 |
-
if diff_b_key_proc in processed_state_dict:
|
147 |
-
target_bias_key = f"transformer.blocks.{i}.ffn.{c_diffusers_path}.bias"
|
148 |
-
MANUAL_PATCHES_STORE[target_bias_key] = ("diff_b", processed_state_dict[diff_b_key_proc])
|
149 |
-
handled_original_keys.add(f"diffusion_model.{diff_b_key_proc}")
|
150 |
-
if diff_w_key_proc in processed_state_dict:
|
151 |
-
target_weight_key = f"transformer.blocks.{i}.ffn.{c_diffusers_path}.weight"
|
152 |
-
MANUAL_PATCHES_STORE[target_weight_key] = ("diff", processed_state_dict[diff_w_key_proc])
|
153 |
-
handled_original_keys.add(f"diffusion_model.{diff_w_key_proc}")
|
154 |
-
|
155 |
-
# Block norm3 diffs (assuming norm3 applies to the output of the FFN in the original Wan block structure)
|
156 |
-
norm3_diff_key_proc = f"blocks.{i}.norm3.diff"
|
157 |
-
norm3_diff_b_key_proc = f"blocks.{i}.norm3.diff_b"
|
158 |
-
if norm3_diff_key_proc in processed_state_dict:
|
159 |
-
MANUAL_PATCHES_STORE[f"transformer.blocks.{i}.norm3.weight"] = ("diff", processed_state_dict[norm3_diff_key_proc]) # Norms usually have .weight
|
160 |
-
handled_original_keys.add(f"diffusion_model.{norm3_diff_key_proc}")
|
161 |
-
if norm3_diff_b_key_proc in processed_state_dict:
|
162 |
-
MANUAL_PATCHES_STORE[f"transformer.blocks.{i}.norm3.bias"] = ("diff_b", processed_state_dict[norm3_diff_b_key_proc]) # And .bias
|
163 |
-
handled_original_keys.add(f"diffusion_model.{norm3_diff_b_key_proc}")
|
164 |
-
|
165 |
-
|
166 |
-
# --- Handle Top-level LoRAs & Diffs ---
|
167 |
-
top_level_mappings = [
|
168 |
-
# (lora_base_path_proc, diffusers_base_path, lora_suffixes, diffusers_suffixes)
|
169 |
-
("text_embedding", "transformer.condition_embedder.text_embedder", ["0", "2"], ["linear_1", "linear_2"]),
|
170 |
-
("time_embedding", "transformer.condition_embedder.time_embedder", ["0", "2"], ["linear_1", "linear_2"]),
|
171 |
-
("time_projection", "transformer.condition_embedder.time_proj", ["1"], [""]), # Wan has .1, Diffusers has no suffix
|
172 |
-
("head", "transformer.proj_out", ["head"], [""]), # Wan has .head, Diffusers has no suffix
|
173 |
-
]
|
174 |
-
|
175 |
-
for lora_base_proc, diffusers_base, lora_suffixes, diffusers_suffixes in top_level_mappings:
|
176 |
-
for l_suffix, d_suffix in zip(lora_suffixes, diffusers_suffixes):
|
177 |
-
actual_lora_path_proc = f"{lora_base_proc}.{l_suffix}" if l_suffix else lora_base_proc
|
178 |
-
actual_diffusers_path = f"{diffusers_base}.{d_suffix}" if d_suffix else diffusers_base
|
179 |
-
|
180 |
-
lora_down_key_proc = f"{actual_lora_path_proc}.lora_down.weight"
|
181 |
-
lora_up_key_proc = f"{actual_lora_path_proc}.lora_up.weight"
|
182 |
-
diff_b_key_proc = f"{actual_lora_path_proc}.diff_b"
|
183 |
-
diff_w_key_proc = f"{actual_lora_path_proc}.diff"
|
184 |
-
|
185 |
-
if lora_down_key_proc in processed_state_dict and lora_up_key_proc in processed_state_dict:
|
186 |
-
peft_state_dict[f"{actual_diffusers_path}.lora_A.weight"] = processed_state_dict[lora_down_key_proc]
|
187 |
-
peft_state_dict[f"{actual_diffusers_path}.lora_B.weight"] = processed_state_dict[lora_up_key_proc]
|
188 |
-
handled_original_keys.add(f"diffusion_model.{lora_down_key_proc}")
|
189 |
-
handled_original_keys.add(f"diffusion_model.{lora_up_key_proc}")
|
190 |
-
if diff_b_key_proc in processed_state_dict:
|
191 |
-
MANUAL_PATCHES_STORE[f"{actual_diffusers_path}.bias"] = ("diff_b", processed_state_dict[diff_b_key_proc])
|
192 |
-
handled_original_keys.add(f"diffusion_model.{diff_b_key_proc}")
|
193 |
-
if diff_w_key_proc in processed_state_dict:
|
194 |
-
MANUAL_PATCHES_STORE[f"{actual_diffusers_path}.weight"] = ("diff", processed_state_dict[diff_w_key_proc])
|
195 |
-
handled_original_keys.add(f"diffusion_model.{diff_w_key_proc}")
|
196 |
-
|
197 |
-
# Patch Embedding
|
198 |
-
patch_emb_diff_b_key = "patch_embedding.diff_b"
|
199 |
-
if patch_emb_diff_b_key in processed_state_dict:
|
200 |
-
MANUAL_PATCHES_STORE["transformer.patch_embedding.bias"] = ("diff_b", processed_state_dict[patch_emb_diff_b_key])
|
201 |
-
handled_original_keys.add(f"diffusion_model.{patch_emb_diff_b_key}")
|
202 |
-
# Assuming .diff might exist for patch_embedding.weight, though not explicitly in your example list
|
203 |
-
patch_emb_diff_w_key = "patch_embedding.diff"
|
204 |
-
if patch_emb_diff_w_key in processed_state_dict:
|
205 |
-
MANUAL_PATCHES_STORE["transformer.patch_embedding.weight"] = ("diff", processed_state_dict[patch_emb_diff_w_key])
|
206 |
-
handled_original_keys.add(f"diffusion_model.{patch_emb_diff_w_key}")
|
207 |
-
|
208 |
-
|
209 |
-
# Log unhandled keys
|
210 |
-
final_unhandled_keys = []
|
211 |
-
for k_orig in original_keys:
|
212 |
-
# Reconstruct the processed key to check if it was actually handled by diff/diff_b or lora A/B logic
|
213 |
-
k_proc = None
|
214 |
-
if k_orig.startswith("diffusion_model."):
|
215 |
-
k_proc = k_orig[len("diffusion_model."):]
|
216 |
-
elif k_orig.startswith("difusion_model."):
|
217 |
-
k_proc = k_orig[len("difusion_model."):]
|
218 |
-
|
219 |
-
if k_orig not in handled_original_keys and (k_proc is None or not any(k_proc.endswith(s) for s in [".lora_down.weight", ".lora_up.weight", ".diff", ".diff_b", ".alpha"])):
|
220 |
-
final_unhandled_keys.append(k_orig)
|
221 |
-
|
222 |
-
if final_unhandled_keys:
|
223 |
-
logger.warning(
|
224 |
-
f"The following keys from the Wan 2.1 LoRA checkpoint were not converted to PEFT LoRA A/B format "
|
225 |
-
f"nor identified as manual diff patches: {final_unhandled_keys}."
|
226 |
-
)
|
227 |
-
|
228 |
-
if not peft_state_dict and not MANUAL_PATCHES_STORE:
|
229 |
-
logger.warning("No valid LoRA A/B weights or manual diff patches found after conversion.")
|
230 |
-
|
231 |
-
return peft_state_dict
|
232 |
-
|
233 |
-
def apply_manual_diff_patches(pipe_model_component, patches_store, strength_model=1.0):
|
234 |
-
if not patches_store:
|
235 |
-
logger.info("No manual diff patches to apply.")
|
236 |
return
|
237 |
|
238 |
-
|
239 |
-
|
|
|
|
|
|
|
|
|
|
|
240 |
try:
|
241 |
-
|
242 |
-
|
243 |
-
|
|
|
|
|
|
|
244 |
|
|
|
245 |
if original_param.shape != diff_tensor.shape:
|
246 |
-
logger.warning(f"Shape mismatch for {
|
247 |
continue
|
248 |
|
249 |
with torch.no_grad():
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
original_param.add_(scaled_diff)
|
254 |
-
# logger.info(f"Applied {patch_type} to {target_key} with strength {strength_model}")
|
255 |
except AttributeError:
|
256 |
-
logger.warning(f"Could not find parameter {
|
257 |
except Exception as e:
|
258 |
-
logger.error(f"Error applying patch to {
|
259 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
|
261 |
# --- Model Loading ---
|
262 |
logger.info(f"Loading VAE for {MODEL_ID}...")
|
@@ -271,7 +202,7 @@ pipe = WanPipeline.from_pretrained(
|
|
271 |
vae=vae,
|
272 |
torch_dtype=torch.bfloat16 # bfloat16 for pipeline
|
273 |
)
|
274 |
-
flow_shift = 8.0
|
275 |
pipe.scheduler = UniPCMultistepScheduler.from_config(
|
276 |
pipe.scheduler.config, flow_shift=flow_shift
|
277 |
)
|
@@ -284,14 +215,13 @@ causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
|
|
284 |
|
285 |
logger.info("Loading LoRA weights with custom converter...")
|
286 |
|
287 |
-
# lora_state_dict_raw = WanPipeline.lora_state_dict(causvid_path) # This might already do some conversion
|
288 |
-
|
289 |
-
# Alternative: Load raw state_dict and then convert
|
290 |
from safetensors.torch import load_file as load_safetensors
|
291 |
raw_lora_state_dict = load_safetensors(causvid_path)
|
292 |
|
|
|
293 |
peft_state_dict = _custom_convert_non_diffusers_wan_lora_to_diffusers(raw_lora_state_dict)
|
294 |
|
|
|
295 |
if peft_state_dict:
|
296 |
pipe.load_lora_weights(
|
297 |
peft_state_dict,
|
@@ -301,8 +231,8 @@ if peft_state_dict:
|
|
301 |
else:
|
302 |
logger.warning("No PEFT-compatible LoRA weights found after conversion.")
|
303 |
|
304 |
-
|
305 |
-
apply_manual_diff_patches(pipe
|
306 |
logger.info("Manual diff_b/diff patches applied.")
|
307 |
|
308 |
|
@@ -334,7 +264,7 @@ def generate_video(prompt, negative_prompt, height, width, num_frames, guidance_
|
|
334 |
|
335 |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
|
336 |
video_path = tmpfile.name
|
337 |
-
|
338 |
export_to_video(output_frames_list, video_path, fps=fps)
|
339 |
logger.info(f"Video successfully generated and saved to {video_path}")
|
340 |
return video_path
|
@@ -350,7 +280,6 @@ with gr.Blocks() as demo:
|
|
350 |
Model is loaded into memory when the app starts. This might take a few minutes.
|
351 |
Ensure you have a GPU with sufficient VRAM (e.g., ~24GB+ for these default settings).
|
352 |
""")
|
353 |
-
# ... (rest of your Gradio UI definition remains the same) ...
|
354 |
with gr.Row():
|
355 |
with gr.Column(scale=2):
|
356 |
prompt_input = gr.Textbox(label="Prompt", value=default_prompt, lines=3)
|
@@ -363,7 +292,7 @@ with gr.Blocks() as demo:
|
|
363 |
height_input = gr.Slider(minimum=256, maximum=768, step=64, value=480, label="Height (multiple of 8)")
|
364 |
width_input = gr.Slider(minimum=256, maximum=1024, step=64, value=832, label="Width (multiple of 8)")
|
365 |
with gr.Row():
|
366 |
-
num_frames_input = gr.Slider(minimum=16, maximum=100, step=1, value=25, label="Number of Frames")
|
367 |
fps_input = gr.Slider(minimum=5, maximum=30, step=1, value=15, label="Output FPS")
|
368 |
steps = gr.Slider(minimum=1.0, maximum=30.0, value=4.0, label="Steps")
|
369 |
guidance_scale_input = gr.Slider(minimum=1.0, maximum=20.0, step=0.5, value=1.0, label="Guidance Scale")
|
|
|
1 |
import torch
|
2 |
from diffusers import AutoencoderKLWan, WanPipeline, UniPCMultistepScheduler
|
3 |
from diffusers.utils import export_to_video
|
4 |
+
from diffusers.loaders.lora_conversion_utils import _convert_non_diffusers_wan_lora_to_diffusers # Keep this if it's the base for standard LoRA parts
|
5 |
import gradio as gr
|
6 |
import tempfile
|
7 |
import os
|
8 |
import spaces
|
9 |
from huggingface_hub import hf_hub_download
|
10 |
import logging # For better logging
|
11 |
+
import re # For key manipulation
|
12 |
|
13 |
# --- Global Model Loading & LoRA Handling ---
|
14 |
MODEL_ID = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
|
|
|
19 |
logging.basicConfig(level=logging.INFO)
|
20 |
logger = logging.getLogger(__name__)
|
21 |
|
22 |
+
MANUAL_PATCHES_STORE = {"diff": {}, "diff_b": {}}
|
|
|
23 |
|
24 |
def _custom_convert_non_diffusers_wan_lora_to_diffusers(state_dict):
|
25 |
global MANUAL_PATCHES_STORE
|
26 |
+
MANUAL_PATCHES_STORE = {"diff": {}, "diff_b": {}} # Reset for each conversion
|
27 |
+
peft_compatible_state_dict = {}
|
28 |
unhandled_keys = []
|
29 |
|
30 |
+
original_keys_map_to_diffusers = {}
|
31 |
|
32 |
+
# Mapping based on ComfyUI's WanModel structure and PeftAdapterMixin logic
|
33 |
+
# This needs to map the original LoRA key naming to Diffusers' expected PEFT keys
|
34 |
+
# diffusion_model.blocks.0.self_attn.q.lora_down.weight -> transformer.blocks.0.attn1.to_q.lora_A.weight
|
35 |
+
# diffusion_model.blocks.0.ffn.0.lora_down.weight -> transformer.blocks.0.ffn.net.0.proj.lora_A.weight
|
36 |
+
# diffusion_model.text_embedding.0.lora_down.weight -> transformer.condition_embedder.text_embedder.linear_1.lora_A.weight (example)
|
37 |
+
|
38 |
+
# Strip "diffusion_model." and map
|
39 |
for k, v in state_dict.items():
|
40 |
+
original_k = k # Keep for logging/debugging
|
41 |
if k.startswith("diffusion_model."):
|
42 |
+
k_stripped = k[len("diffusion_model."):]
|
43 |
elif k.startswith("difusion_model."): # Handle potential typo
|
44 |
+
k_stripped = k[len("difusion_model."):]
|
45 |
+
logger.warning(f"Key '{original_k}' starts with 'difusion_model.' (potential typo), processing as 'diffusion_model.'.")
|
46 |
else:
|
47 |
+
unhandled_keys.append(original_k)
|
48 |
+
continue
|
49 |
+
|
50 |
+
# Handle .diff and .diff_b keys by storing them separately
|
51 |
+
if k_stripped.endswith(".diff"):
|
52 |
+
target_model_key = k_stripped[:-len(".diff")] + ".weight"
|
53 |
+
MANUAL_PATCHES_STORE["diff"][target_model_key] = v
|
54 |
+
continue
|
55 |
+
elif k_stripped.endswith(".diff_b"):
|
56 |
+
target_model_key = k_stripped[:-len(".diff_b")] + ".bias"
|
57 |
+
MANUAL_PATCHES_STORE["diff_b"][target_model_key] = v
|
58 |
+
continue
|
59 |
+
|
60 |
+
# Handle standard LoRA A/B matrices
|
61 |
+
if ".lora_down.weight" in k_stripped:
|
62 |
+
diffusers_key_base = k_stripped.replace(".lora_down.weight", "")
|
63 |
+
# Apply transformations similar to _convert_non_diffusers_wan_lora_to_diffusers from diffusers
|
64 |
+
# but adapt to the PEFT naming convention (lora_A/lora_B)
|
65 |
+
# This part needs careful mapping based on WanTransformer3DModel structure
|
66 |
+
|
67 |
+
# Example mappings (these need to be comprehensive for all layers)
|
68 |
+
if diffusers_key_base.startswith("blocks."):
|
69 |
+
parts = diffusers_key_base.split(".")
|
70 |
+
block_idx = parts[1]
|
71 |
+
attn_type = parts[2] # self_attn or cross_attn
|
72 |
+
proj_type = parts[3] # q, k, v, o
|
73 |
+
|
74 |
+
if attn_type == "self_attn":
|
75 |
+
diffusers_peft_key = f"transformer.blocks.{block_idx}.attn1.to_{proj_type}.lora_A.weight"
|
76 |
+
elif attn_type == "cross_attn":
|
77 |
+
# WanTransformer3DModel uses attn2 for cross-attention like features
|
78 |
+
diffusers_peft_key = f"transformer.blocks.{block_idx}.attn2.to_{proj_type}.lora_A.weight"
|
79 |
+
else: # ffn
|
80 |
+
ffn_idx = proj_type # "0" or "2"
|
81 |
+
diffusers_peft_key = f"transformer.blocks.{block_idx}.ffn.net.{ffn_idx}.proj.lora_A.weight"
|
82 |
+
elif diffusers_key_base.startswith("text_embedding."):
|
83 |
+
idx_map = {"0": "linear_1", "2": "linear_2"}
|
84 |
+
idx = diffusers_key_base.split(".")[1]
|
85 |
+
diffusers_peft_key = f"transformer.condition_embedder.text_embedder.{idx_map[idx]}.lora_A.weight"
|
86 |
+
elif diffusers_key_base.startswith("time_embedding."):
|
87 |
+
idx_map = {"0": "linear_1", "2": "linear_2"}
|
88 |
+
idx = diffusers_key_base.split(".")[1]
|
89 |
+
diffusers_peft_key = f"transformer.condition_embedder.time_embedder.{idx_map[idx]}.lora_A.weight"
|
90 |
+
elif diffusers_key_base.startswith("time_projection."): # Assuming '1' from your example
|
91 |
+
diffusers_peft_key = f"transformer.condition_embedder.time_proj.lora_A.weight"
|
92 |
+
elif diffusers_key_base.startswith("patch_embedding"):
|
93 |
+
# WanTransformer3DModel has 'patch_embedding' at the top level
|
94 |
+
diffusers_peft_key = f"transformer.patch_embedding.lora_A.weight" # This needs to match how PEFT would name it
|
95 |
+
elif diffusers_key_base.startswith("head.head"):
|
96 |
+
diffusers_peft_key = f"transformer.proj_out.lora_A.weight"
|
97 |
+
else:
|
98 |
+
unhandled_keys.append(original_k)
|
99 |
+
continue
|
100 |
+
|
101 |
+
peft_compatible_state_dict[diffusers_peft_key] = v
|
102 |
+
original_keys_map_to_diffusers[k_stripped] = diffusers_peft_key
|
103 |
+
|
104 |
+
elif ".lora_up.weight" in k_stripped:
|
105 |
+
# Find the corresponding lora_down key to determine the base name
|
106 |
+
down_key_stripped = k_stripped.replace(".lora_up.weight", ".lora_down.weight")
|
107 |
+
if down_key_stripped in original_keys_map_to_diffusers:
|
108 |
+
diffusers_peft_key_A = original_keys_map_to_diffusers[down_key_stripped]
|
109 |
+
diffusers_peft_key_B = diffusers_peft_key_A.replace(".lora_A.weight", ".lora_B.weight")
|
110 |
+
peft_compatible_state_dict[diffusers_peft_key_B] = v
|
111 |
+
else:
|
112 |
+
unhandled_keys.append(original_k)
|
113 |
+
elif not (k_stripped.endswith(".alpha") or k_stripped.endswith(".dora_scale")): # Alphas are handled by PEFT if lora_A/B present
|
114 |
+
unhandled_keys.append(original_k)
|
115 |
+
|
116 |
+
|
117 |
+
if unhandled_keys:
|
118 |
+
logger.warning(f"Custom Wan LoRA Converter: Unhandled keys: {unhandled_keys}")
|
119 |
+
|
120 |
+
return peft_compatible_state_dict
|
121 |
+
|
122 |
+
|
123 |
+
def apply_manual_diff_patches(pipe_model, patches_store, lora_strength=1.0):
|
124 |
+
if not hasattr(pipe_model, "transformer"):
|
125 |
+
logger.error("Pipeline model does not have a 'transformer' attribute to patch.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
return
|
127 |
|
128 |
+
transformer = pipe_model.transformer
|
129 |
+
changed_params_count = 0
|
130 |
+
|
131 |
+
for key_base, diff_tensor in patches_store.get("diff", {}).items():
|
132 |
+
# key_base is like "blocks.0.self_attn.q.weight"
|
133 |
+
# We need to prepend "transformer." to match diffusers internal naming
|
134 |
+
target_key_full = f"transformer.{key_base}"
|
135 |
try:
|
136 |
+
module_path_parts = target_key_full.split('.')
|
137 |
+
param_name = module_path_parts[-1]
|
138 |
+
module_path = ".".join(module_path_parts[:-1])
|
139 |
+
module = transformer
|
140 |
+
for part in module_path.split('.')[1:]: # Skip the first 'transformer'
|
141 |
+
module = getattr(module, part)
|
142 |
|
143 |
+
original_param = getattr(module, param_name)
|
144 |
if original_param.shape != diff_tensor.shape:
|
145 |
+
logger.warning(f"Shape mismatch for diff patch on {target_key_full}: model {original_param.shape}, lora {diff_tensor.shape}. Skipping.")
|
146 |
continue
|
147 |
|
148 |
with torch.no_grad():
|
149 |
+
scaled_diff = (lora_strength * diff_tensor.to(original_param.device, original_param.dtype))
|
150 |
+
original_param.data.add_(scaled_diff)
|
151 |
+
changed_params_count +=1
|
|
|
|
|
152 |
except AttributeError:
|
153 |
+
logger.warning(f"Could not find parameter {target_key_full} in transformer to apply diff patch.")
|
154 |
except Exception as e:
|
155 |
+
logger.error(f"Error applying diff patch to {target_key_full}: {e}")
|
156 |
+
|
157 |
+
|
158 |
+
for key_base, diff_b_tensor in patches_store.get("diff_b", {}).items():
|
159 |
+
# key_base is like "blocks.0.self_attn.q.bias"
|
160 |
+
target_key_full = f"transformer.{key_base}"
|
161 |
+
try:
|
162 |
+
module_path_parts = target_key_full.split('.')
|
163 |
+
param_name = module_path_parts[-1]
|
164 |
+
module_path = ".".join(module_path_parts[:-1])
|
165 |
+
module = transformer
|
166 |
+
for part in module_path.split('.')[1:]:
|
167 |
+
module = getattr(module, part)
|
168 |
+
|
169 |
+
original_param = getattr(module, param_name)
|
170 |
+
if original_param is None:
|
171 |
+
logger.warning(f"Bias parameter {target_key_full} is None in model. Skipping diff_b patch.")
|
172 |
+
continue
|
173 |
+
|
174 |
+
if original_param.shape != diff_b_tensor.shape:
|
175 |
+
logger.warning(f"Shape mismatch for diff_b patch on {target_key_full}: model {original_param.shape}, lora {diff_b_tensor.shape}. Skipping.")
|
176 |
+
continue
|
177 |
+
|
178 |
+
with torch.no_grad():
|
179 |
+
scaled_diff_b = (lora_strength * diff_b_tensor.to(original_param.device, original_param.dtype))
|
180 |
+
original_param.data.add_(scaled_diff_b)
|
181 |
+
changed_params_count +=1
|
182 |
+
except AttributeError:
|
183 |
+
logger.warning(f"Could not find parameter {target_key_full} in transformer to apply diff_b patch.")
|
184 |
+
except Exception as e:
|
185 |
+
logger.error(f"Error applying diff_b patch to {target_key_full}: {e}")
|
186 |
+
if changed_params_count > 0:
|
187 |
+
logger.info(f"Applied {changed_params_count} manual diff/diff_b patches.")
|
188 |
+
else:
|
189 |
+
logger.info("No manual diff/diff_b patches were applied.")
|
190 |
+
|
191 |
|
192 |
# --- Model Loading ---
|
193 |
logger.info(f"Loading VAE for {MODEL_ID}...")
|
|
|
202 |
vae=vae,
|
203 |
torch_dtype=torch.bfloat16 # bfloat16 for pipeline
|
204 |
)
|
205 |
+
flow_shift = 8.0
|
206 |
pipe.scheduler = UniPCMultistepScheduler.from_config(
|
207 |
pipe.scheduler.config, flow_shift=flow_shift
|
208 |
)
|
|
|
215 |
|
216 |
logger.info("Loading LoRA weights with custom converter...")
|
217 |
|
|
|
|
|
|
|
218 |
from safetensors.torch import load_file as load_safetensors
|
219 |
raw_lora_state_dict = load_safetensors(causvid_path)
|
220 |
|
221 |
+
# Now call our custom converter which will populate MANUAL_PATCHES_STORE
|
222 |
peft_state_dict = _custom_convert_non_diffusers_wan_lora_to_diffusers(raw_lora_state_dict)
|
223 |
|
224 |
+
# Load the LoRA A/B matrices using PEFT
|
225 |
if peft_state_dict:
|
226 |
pipe.load_lora_weights(
|
227 |
peft_state_dict,
|
|
|
231 |
else:
|
232 |
logger.warning("No PEFT-compatible LoRA weights found after conversion.")
|
233 |
|
234 |
+
# Apply manual diff_b and diff patches
|
235 |
+
apply_manual_diff_patches(pipe, MANUAL_PATCHES_STORE, lora_strength=1.0) # Assuming default strength 1.0
|
236 |
logger.info("Manual diff_b/diff patches applied.")
|
237 |
|
238 |
|
|
|
264 |
|
265 |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
|
266 |
video_path = tmpfile.name
|
267 |
+
|
268 |
export_to_video(output_frames_list, video_path, fps=fps)
|
269 |
logger.info(f"Video successfully generated and saved to {video_path}")
|
270 |
return video_path
|
|
|
280 |
Model is loaded into memory when the app starts. This might take a few minutes.
|
281 |
Ensure you have a GPU with sufficient VRAM (e.g., ~24GB+ for these default settings).
|
282 |
""")
|
|
|
283 |
with gr.Row():
|
284 |
with gr.Column(scale=2):
|
285 |
prompt_input = gr.Textbox(label="Prompt", value=default_prompt, lines=3)
|
|
|
292 |
height_input = gr.Slider(minimum=256, maximum=768, step=64, value=480, label="Height (multiple of 8)")
|
293 |
width_input = gr.Slider(minimum=256, maximum=1024, step=64, value=832, label="Width (multiple of 8)")
|
294 |
with gr.Row():
|
295 |
+
num_frames_input = gr.Slider(minimum=16, maximum=100, step=1, value=25, label="Number of Frames")
|
296 |
fps_input = gr.Slider(minimum=5, maximum=30, step=1, value=15, label="Output FPS")
|
297 |
steps = gr.Slider(minimum=1.0, maximum=30.0, value=4.0, label="Steps")
|
298 |
guidance_scale_input = gr.Slider(minimum=1.0, maximum=20.0, step=0.5, value=1.0, label="Guidance Scale")
|