Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -22,277 +22,241 @@ logger = logging.getLogger(__name__)
|
|
22 |
MANUAL_PATCHES_STORE = {}
|
23 |
|
24 |
def _custom_convert_non_diffusers_wan_lora_to_diffusers(state_dict):
|
25 |
-
"""
|
26 |
-
Custom converter for Wan 2.1 T2V LoRA.
|
27 |
-
Separates LoRA A/B weights for PEFT and diff_b/diff for manual patching.
|
28 |
-
Stores diff_b/diff in the global MANUAL_PATCHES_STORE.
|
29 |
-
"""
|
30 |
global MANUAL_PATCHES_STORE
|
31 |
-
MANUAL_PATCHES_STORE
|
|
|
|
|
32 |
|
33 |
-
|
34 |
-
manual_diff_patches = {}
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
k
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
42 |
|
43 |
-
# --- Determine number of blocks ---
|
44 |
block_indices = set()
|
45 |
-
for
|
46 |
-
if "blocks."
|
47 |
try:
|
48 |
-
block_idx_str =
|
49 |
if block_idx_str.isdigit():
|
50 |
block_indices.add(int(block_idx_str))
|
51 |
-
except
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
# FFN
|
92 |
-
for
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
if
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
if
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
# Patch Embedding
|
126 |
patch_emb_diff_b_key = "patch_embedding.diff_b"
|
127 |
-
if patch_emb_diff_b_key in
|
128 |
-
|
129 |
-
|
130 |
-
#
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
if
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
converted_state_dict_for_peft[f"{target_base_key_peft}.lora_B.weight"] = original_state_dict.pop(orig_lora_up_key)
|
152 |
-
orig_diff_b_key = f"time_embedding.{orig_idx}.diff_b"
|
153 |
-
if orig_diff_b_key in original_state_dict:
|
154 |
-
manual_diff_patches[f"{target_base_key_manual}.bias"] = original_state_dict.pop(orig_diff_b_key)
|
155 |
-
|
156 |
-
# Time Projection
|
157 |
-
orig_lora_down_key = "time_projection.1.lora_down.weight"
|
158 |
-
orig_lora_up_key = "time_projection.1.lora_up.weight"
|
159 |
-
target_base_key_peft = "condition_embedder.time_proj"
|
160 |
-
target_base_key_manual = "transformer.condition_embedder.time_proj"
|
161 |
-
if orig_lora_down_key in original_state_dict and orig_lora_up_key in original_state_dict:
|
162 |
-
converted_state_dict_for_peft[f"{target_base_key_peft}.lora_A.weight"] = original_state_dict.pop(orig_lora_down_key)
|
163 |
-
converted_state_dict_for_peft[f"{target_base_key_peft}.lora_B.weight"] = original_state_dict.pop(orig_lora_up_key)
|
164 |
-
orig_diff_b_key = "time_projection.1.diff_b"
|
165 |
-
if orig_diff_b_key in original_state_dict:
|
166 |
-
manual_diff_patches[f"{target_base_key_manual}.bias"] = original_state_dict.pop(orig_diff_b_key)
|
167 |
-
|
168 |
-
# Head
|
169 |
-
orig_lora_down_key = "head.head.lora_down.weight"
|
170 |
-
orig_lora_up_key = "head.head.lora_up.weight"
|
171 |
-
target_base_key_peft = "proj_out" # Directly under transformer in Diffusers DiT
|
172 |
-
target_base_key_manual = "transformer.proj_out"
|
173 |
-
if orig_lora_down_key in original_state_dict and orig_lora_up_key in original_state_dict:
|
174 |
-
converted_state_dict_for_peft[f"{target_base_key_peft}.lora_A.weight"] = original_state_dict.pop(orig_lora_down_key)
|
175 |
-
converted_state_dict_for_peft[f"{target_base_key_peft}.lora_B.weight"] = original_state_dict.pop(orig_lora_up_key)
|
176 |
-
orig_diff_b_key = "head.head.diff_b"
|
177 |
-
if orig_diff_b_key in original_state_dict:
|
178 |
-
manual_diff_patches[f"{target_base_key_manual}.bias"] = original_state_dict.pop(orig_diff_b_key)
|
179 |
-
|
180 |
-
# Log any remaining keys from the original LoRA after stripping "diffusion_model."
|
181 |
-
if len(original_state_dict) > 0:
|
182 |
logger.warning(
|
183 |
-
f"
|
|
|
184 |
)
|
185 |
|
186 |
-
|
187 |
-
|
188 |
-
for k_peft, v_peft in converted_state_dict_for_peft.items():
|
189 |
-
final_peft_state_dict[f"transformer.{k_peft}"] = v_peft
|
190 |
-
|
191 |
-
MANUAL_PATCHES_STORE = manual_diff_patches # Store for later use
|
192 |
-
return final_peft_state_dict
|
193 |
|
|
|
194 |
|
195 |
-
def apply_manual_diff_patches(
|
196 |
-
|
197 |
-
Manually applies diff_b/diff patches to the model.
|
198 |
-
Assumes PEFT LoRA layers have already been loaded.
|
199 |
-
"""
|
200 |
-
if not patches:
|
201 |
logger.info("No manual diff patches to apply.")
|
202 |
return
|
203 |
|
204 |
-
logger.info(f"Applying {len(
|
205 |
-
|
206 |
-
unpatched_keys_count = 0
|
207 |
-
skipped_keys_details = []
|
208 |
-
|
209 |
-
for key, diff_tensor in patches.items():
|
210 |
try:
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
# e.g., ["blocks", "0", "attn1", "to_q", "bias"]
|
215 |
-
|
216 |
-
# Navigate to the parent module of the parameter
|
217 |
-
# Example: for "blocks.0.attn1.to_q.bias", parent_module_path is "blocks.0.attn1.to_q"
|
218 |
-
parent_module_path = path_parts[:-1]
|
219 |
-
param_name_to_patch = path_parts[-1] # "bias" or "weight"
|
220 |
-
|
221 |
-
for part in parent_module_path:
|
222 |
-
if hasattr(current_module, part):
|
223 |
-
current_module = getattr(current_module, part)
|
224 |
-
elif hasattr(current_module, 'base_layer') and hasattr(current_module.base_layer, part):
|
225 |
-
# This case is unlikely here as we are navigating *to* the layer,
|
226 |
-
# not trying to access a sub-component of a base_layer.
|
227 |
-
# PEFT wrapping affects the layer itself, not its parent structure.
|
228 |
-
current_module = getattr(current_module.base_layer, part)
|
229 |
-
else:
|
230 |
-
raise AttributeError(f"Submodule '{part}' not found in path '{'.'.join(parent_module_path)}' within {key}")
|
231 |
-
|
232 |
-
# Now, current_module is the layer whose parameter we want to patch
|
233 |
-
# e.g., if key was transformer.blocks.0.attn1.to_q.bias,
|
234 |
-
# current_module is the to_q Linear layer (or LoraLayer wrapping it)
|
235 |
-
|
236 |
-
layer_to_modify = current_module
|
237 |
-
# If PEFT wrapped the Linear layer (common for attention q,k,v,o and ffn projections)
|
238 |
-
if hasattr(layer_to_modify, "base_layer") and isinstance(layer_to_modify.base_layer, (torch.nn.Linear, torch.nn.LayerNorm)):
|
239 |
-
actual_param_owner = layer_to_modify.base_layer
|
240 |
-
else: # For non-wrapped layers like LayerNorm, or if it's already the base_layer
|
241 |
-
actual_param_owner = layer_to_modify
|
242 |
-
|
243 |
-
if not hasattr(actual_param_owner, param_name_to_patch):
|
244 |
-
skipped_keys_details.append(f"Key: {key}, Reason: Parameter '{param_name_to_patch}' not found in layer '{actual_param_owner}'. Layer type: {type(actual_param_owner)}")
|
245 |
-
unpatched_keys_count += 1
|
246 |
-
continue
|
247 |
|
248 |
-
original_param
|
249 |
-
|
250 |
-
if original_param is None and param_name_to_patch == "bias":
|
251 |
-
logger.info(f"Key '{key}': Original bias is None. Attempting to initialize.")
|
252 |
-
if isinstance(actual_param_owner, torch.nn.Linear) or isinstance(actual_param_owner, torch.nn.LayerNorm):
|
253 |
-
# For LayerNorm, bias exists if elementwise_affine=True (default).
|
254 |
-
# If it was False, we are making it affine by adding a bias.
|
255 |
-
# For Linear, if bias was False, we are adding one.
|
256 |
-
actual_param_owner.bias = torch.nn.Parameter(torch.zeros_like(diff_tensor, device=diff_tensor.device, dtype=diff_tensor.dtype))
|
257 |
-
original_param = actual_param_owner.bias
|
258 |
-
logger.info(f"Key '{key}': Initialized bias for {type(actual_param_owner)}.")
|
259 |
-
else:
|
260 |
-
skipped_keys_details.append(f"Key: {key}, Reason: Original bias is None and layer '{actual_param_owner}' is not Linear or LayerNorm. Cannot initialize.")
|
261 |
-
unpatched_keys_count +=1
|
262 |
-
continue
|
263 |
-
|
264 |
-
# Special handling for RMSNorm which typically has no bias
|
265 |
-
if isinstance(actual_param_owner, torch.nn.RMSNorm) and param_name_to_patch == "bias":
|
266 |
-
skipped_keys_details.append(f"Key: {key}, Reason: Layer '{actual_param_owner}' is RMSNorm which has no bias parameter. Skipping bias diff.")
|
267 |
-
unpatched_keys_count +=1
|
268 |
continue
|
269 |
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
# logger.info(f"Successfully applied diff to '{key}'") # Too verbose, will log summary
|
279 |
-
patched_keys_count += 1
|
280 |
-
else:
|
281 |
-
skipped_keys_details.append(f"Key: {key}, Reason: Original parameter '{param_name_to_patch}' is None and was not initialized. Layer: {actual_param_owner}")
|
282 |
-
unpatched_keys_count += 1
|
283 |
-
|
284 |
-
except AttributeError as e:
|
285 |
-
skipped_keys_details.append(f"Key: {key}, Reason: AttributeError - {e}")
|
286 |
-
unpatched_keys_count += 1
|
287 |
except Exception as e:
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
logger.info(f"Manual patching summary: {patched_keys_count} keys patched, {unpatched_keys_count} keys failed or skipped.")
|
292 |
-
if unpatched_keys_count > 0:
|
293 |
-
logger.warning("Details of unpatched/skipped keys:")
|
294 |
-
for detail in skipped_keys_details:
|
295 |
-
logger.warning(f" - {detail}")
|
296 |
|
297 |
# --- Model Loading ---
|
298 |
logger.info(f"Loading VAE for {MODEL_ID}...")
|
@@ -326,21 +290,19 @@ logger.info("Loading LoRA weights with custom converter...")
|
|
326 |
from safetensors.torch import load_file as load_safetensors
|
327 |
raw_lora_state_dict = load_safetensors(causvid_path)
|
328 |
|
329 |
-
# Now call our custom converter which will populate MANUAL_PATCHES_STORE
|
330 |
peft_state_dict = _custom_convert_non_diffusers_wan_lora_to_diffusers(raw_lora_state_dict)
|
331 |
|
332 |
-
# Load the LoRA A/B matrices using PEFT
|
333 |
if peft_state_dict:
|
334 |
pipe.load_lora_weights(
|
335 |
-
peft_state_dict,
|
336 |
adapter_name="causvid_lora"
|
337 |
)
|
338 |
logger.info("PEFT LoRA A/B weights loaded.")
|
339 |
else:
|
340 |
logger.warning("No PEFT-compatible LoRA weights found after conversion.")
|
341 |
|
342 |
-
|
343 |
-
apply_manual_diff_patches(pipe.transformer, MANUAL_PATCHES_STORE)
|
344 |
logger.info("Manual diff_b/diff patches applied.")
|
345 |
|
346 |
|
|
|
22 |
MANUAL_PATCHES_STORE = {}
|
23 |
|
24 |
def _custom_convert_non_diffusers_wan_lora_to_diffusers(state_dict):
|
|
|
|
|
|
|
|
|
|
|
25 |
global MANUAL_PATCHES_STORE
|
26 |
+
MANUAL_PATCHES_STORE = {} # Clear previous patches
|
27 |
+
peft_state_dict = {}
|
28 |
+
unhandled_keys = []
|
29 |
|
30 |
+
original_keys = list(state_dict.keys())
|
|
|
31 |
|
32 |
+
processed_state_dict = {}
|
33 |
+
for k, v in state_dict.items():
|
34 |
+
if k.startswith("diffusion_model."):
|
35 |
+
processed_state_dict[k[len("diffusion_model."):]] = v
|
36 |
+
elif k.startswith("difusion_model."): # Handle potential typo
|
37 |
+
processed_state_dict[k[len("difusion_model."):]] = v
|
38 |
+
else:
|
39 |
+
unhandled_keys.append(k) # Will be logged later if not handled by diff/diff_b
|
40 |
|
|
|
41 |
block_indices = set()
|
42 |
+
for k_proc in processed_state_dict:
|
43 |
+
if k_proc.startswith("blocks."):
|
44 |
try:
|
45 |
+
block_idx_str = k_proc.split("blocks.")[1].split(".")[0]
|
46 |
if block_idx_str.isdigit():
|
47 |
block_indices.add(int(block_idx_str))
|
48 |
+
except IndexError:
|
49 |
+
pass # Will be handled as a non-block key or logged
|
50 |
+
num_blocks = 0
|
51 |
+
if block_indices:
|
52 |
+
num_blocks = max(block_indices) + 1
|
53 |
+
|
54 |
+
is_i2v_lora = any("k_img" in k for k in processed_state_dict) and \
|
55 |
+
any("v_img" in k for k in processed_state_dict)
|
56 |
+
|
57 |
+
handled_original_keys = set()
|
58 |
+
|
59 |
+
# --- Handle Block-level LoRAs & Diffs ---
|
60 |
+
for i in range(num_blocks):
|
61 |
+
# Self-attention (maps to attn1 in WanTransformerBlock)
|
62 |
+
for o_lora, c_diffusers in zip(["q", "k", "v", "o"], ["to_q", "to_k", "to_v", "to_out.0"]):
|
63 |
+
lora_down_key_proc = f"blocks.{i}.self_attn.{o_lora}.lora_down.weight"
|
64 |
+
lora_up_key_proc = f"blocks.{i}.self_attn.{o_lora}.lora_up.weight"
|
65 |
+
diff_b_key_proc = f"blocks.{i}.self_attn.{o_lora}.diff_b"
|
66 |
+
diff_w_key_proc = f"blocks.{i}.self_attn.{o_lora}.diff" # Assuming .diff for weight
|
67 |
+
|
68 |
+
if lora_down_key_proc in processed_state_dict and lora_up_key_proc in processed_state_dict:
|
69 |
+
peft_state_dict[f"transformer.blocks.{i}.attn1.{c_diffusers}.lora_A.weight"] = processed_state_dict[lora_down_key_proc]
|
70 |
+
peft_state_dict[f"transformer.blocks.{i}.attn1.{c_diffusers}.lora_B.weight"] = processed_state_dict[lora_up_key_proc]
|
71 |
+
handled_original_keys.add(f"diffusion_model.{lora_down_key_proc}")
|
72 |
+
handled_original_keys.add(f"diffusion_model.{lora_up_key_proc}")
|
73 |
+
if diff_b_key_proc in processed_state_dict:
|
74 |
+
target_bias_key = f"transformer.blocks.{i}.attn1.{c_diffusers}.bias"
|
75 |
+
MANUAL_PATCHES_STORE[target_bias_key] = ("diff_b", processed_state_dict[diff_b_key_proc])
|
76 |
+
handled_original_keys.add(f"diffusion_model.{diff_b_key_proc}")
|
77 |
+
if diff_w_key_proc in processed_state_dict:
|
78 |
+
target_weight_key = f"transformer.blocks.{i}.attn1.{c_diffusers}.weight"
|
79 |
+
MANUAL_PATCHES_STORE[target_weight_key] = ("diff", processed_state_dict[diff_w_key_proc])
|
80 |
+
handled_original_keys.add(f"diffusion_model.{diff_w_key_proc}")
|
81 |
+
|
82 |
+
# Cross-attention (maps to attn2 in WanTransformerBlock)
|
83 |
+
for o_lora, c_diffusers in zip(["q", "k", "v", "o"], ["to_q", "to_k", "to_v", "to_out.0"]):
|
84 |
+
lora_down_key_proc = f"blocks.{i}.cross_attn.{o_lora}.lora_down.weight"
|
85 |
+
lora_up_key_proc = f"blocks.{i}.cross_attn.{o_lora}.lora_up.weight"
|
86 |
+
diff_b_key_proc = f"blocks.{i}.cross_attn.{o_lora}.diff_b"
|
87 |
+
diff_w_key_proc = f"blocks.{i}.cross_attn.{o_lora}.diff"
|
88 |
+
norm_q_diff_key_proc = f"blocks.{i}.cross_attn.norm_q.diff" # specific norm diff
|
89 |
+
norm_k_diff_key_proc = f"blocks.{i}.cross_attn.norm_k.diff" # specific norm diff
|
90 |
+
|
91 |
+
if lora_down_key_proc in processed_state_dict and lora_up_key_proc in processed_state_dict:
|
92 |
+
peft_state_dict[f"transformer.blocks.{i}.attn2.{c_diffusers}.lora_A.weight"] = processed_state_dict[lora_down_key_proc]
|
93 |
+
peft_state_dict[f"transformer.blocks.{i}.attn2.{c_diffusers}.lora_B.weight"] = processed_state_dict[lora_up_key_proc]
|
94 |
+
handled_original_keys.add(f"diffusion_model.{lora_down_key_proc}")
|
95 |
+
handled_original_keys.add(f"diffusion_model.{lora_up_key_proc}")
|
96 |
+
if diff_b_key_proc in processed_state_dict:
|
97 |
+
target_bias_key = f"transformer.blocks.{i}.attn2.{c_diffusers}.bias"
|
98 |
+
MANUAL_PATCHES_STORE[target_bias_key] = ("diff_b", processed_state_dict[diff_b_key_proc])
|
99 |
+
handled_original_keys.add(f"diffusion_model.{diff_b_key_proc}")
|
100 |
+
if diff_w_key_proc in processed_state_dict:
|
101 |
+
target_weight_key = f"transformer.blocks.{i}.attn2.{c_diffusers}.weight"
|
102 |
+
MANUAL_PATCHES_STORE[target_weight_key] = ("diff", processed_state_dict[diff_w_key_proc])
|
103 |
+
handled_original_keys.add(f"diffusion_model.{diff_w_key_proc}")
|
104 |
+
|
105 |
+
if norm_q_diff_key_proc in processed_state_dict: # Assuming norm_q on q_proj
|
106 |
+
MANUAL_PATCHES_STORE[f"transformer.blocks.{i}.attn2.norm_q.weight"] = ("diff", processed_state_dict[norm_q_diff_key_proc])
|
107 |
+
handled_original_keys.add(f"diffusion_model.{norm_q_diff_key_proc}")
|
108 |
+
if norm_k_diff_key_proc in processed_state_dict: # Assuming norm_k on k_proj
|
109 |
+
MANUAL_PATCHES_STORE[f"transformer.blocks.{i}.attn2.norm_k.weight"] = ("diff", processed_state_dict[norm_k_diff_key_proc])
|
110 |
+
handled_original_keys.add(f"diffusion_model.{norm_k_diff_key_proc}")
|
111 |
+
|
112 |
+
|
113 |
+
if is_i2v_lora:
|
114 |
+
for o_lora, c_diffusers in zip(["k_img", "v_img"], ["add_k_proj", "add_v_proj"]):
|
115 |
+
lora_down_key_proc = f"blocks.{i}.cross_attn.{o_lora}.lora_down.weight"
|
116 |
+
lora_up_key_proc = f"blocks.{i}.cross_attn.{o_lora}.lora_up.weight"
|
117 |
+
diff_b_key_proc = f"blocks.{i}.cross_attn.{o_lora}.diff_b"
|
118 |
+
diff_w_key_proc = f"blocks.{i}.cross_attn.{o_lora}.diff"
|
119 |
+
|
120 |
+
if lora_down_key_proc in processed_state_dict and lora_up_key_proc in processed_state_dict:
|
121 |
+
peft_state_dict[f"transformer.blocks.{i}.attn2.{c_diffusers}.lora_A.weight"] = processed_state_dict[lora_down_key_proc]
|
122 |
+
peft_state_dict[f"transformer.blocks.{i}.attn2.{c_diffusers}.lora_B.weight"] = processed_state_dict[lora_up_key_proc]
|
123 |
+
handled_original_keys.add(f"diffusion_model.{lora_down_key_proc}")
|
124 |
+
handled_original_keys.add(f"diffusion_model.{lora_up_key_proc}")
|
125 |
+
if diff_b_key_proc in processed_state_dict:
|
126 |
+
target_bias_key = f"transformer.blocks.{i}.attn2.{c_diffusers}.bias"
|
127 |
+
MANUAL_PATCHES_STORE[target_bias_key] = ("diff_b", processed_state_dict[diff_b_key_proc])
|
128 |
+
handled_original_keys.add(f"diffusion_model.{diff_b_key_proc}")
|
129 |
+
if diff_w_key_proc in processed_state_dict:
|
130 |
+
target_weight_key = f"transformer.blocks.{i}.attn2.{c_diffusers}.weight"
|
131 |
+
MANUAL_PATCHES_STORE[target_weight_key] = ("diff", processed_state_dict[diff_w_key_proc])
|
132 |
+
handled_original_keys.add(f"diffusion_model.{diff_w_key_proc}")
|
133 |
|
134 |
# FFN
|
135 |
+
for o_lora_suffix, c_diffusers_path in zip([".0", ".2"], ["net.0.proj", "net.2"]):
|
136 |
+
lora_down_key_proc = f"blocks.{i}.ffn{o_lora_suffix}.lora_down.weight"
|
137 |
+
lora_up_key_proc = f"blocks.{i}.ffn{o_lora_suffix}.lora_up.weight"
|
138 |
+
diff_b_key_proc = f"blocks.{i}.ffn{o_lora_suffix}.diff_b"
|
139 |
+
diff_w_key_proc = f"blocks.{i}.ffn{o_lora_suffix}.diff" # Assuming .diff for weight
|
140 |
+
|
141 |
+
if lora_down_key_proc in processed_state_dict and lora_up_key_proc in processed_state_dict:
|
142 |
+
peft_state_dict[f"transformer.blocks.{i}.ffn.{c_diffusers_path}.lora_A.weight"] = processed_state_dict[lora_down_key_proc]
|
143 |
+
peft_state_dict[f"transformer.blocks.{i}.ffn.{c_diffusers_path}.lora_B.weight"] = processed_state_dict[lora_up_key_proc]
|
144 |
+
handled_original_keys.add(f"diffusion_model.{lora_down_key_proc}")
|
145 |
+
handled_original_keys.add(f"diffusion_model.{lora_up_key_proc}")
|
146 |
+
if diff_b_key_proc in processed_state_dict:
|
147 |
+
target_bias_key = f"transformer.blocks.{i}.ffn.{c_diffusers_path}.bias"
|
148 |
+
MANUAL_PATCHES_STORE[target_bias_key] = ("diff_b", processed_state_dict[diff_b_key_proc])
|
149 |
+
handled_original_keys.add(f"diffusion_model.{diff_b_key_proc}")
|
150 |
+
if diff_w_key_proc in processed_state_dict:
|
151 |
+
target_weight_key = f"transformer.blocks.{i}.ffn.{c_diffusers_path}.weight"
|
152 |
+
MANUAL_PATCHES_STORE[target_weight_key] = ("diff", processed_state_dict[diff_w_key_proc])
|
153 |
+
handled_original_keys.add(f"diffusion_model.{diff_w_key_proc}")
|
154 |
+
|
155 |
+
# Block norm3 diffs (assuming norm3 applies to the output of the FFN in the original Wan block structure)
|
156 |
+
norm3_diff_key_proc = f"blocks.{i}.norm3.diff"
|
157 |
+
norm3_diff_b_key_proc = f"blocks.{i}.norm3.diff_b"
|
158 |
+
if norm3_diff_key_proc in processed_state_dict:
|
159 |
+
MANUAL_PATCHES_STORE[f"transformer.blocks.{i}.norm3.weight"] = ("diff", processed_state_dict[norm3_diff_key_proc]) # Norms usually have .weight
|
160 |
+
handled_original_keys.add(f"diffusion_model.{norm3_diff_key_proc}")
|
161 |
+
if norm3_diff_b_key_proc in processed_state_dict:
|
162 |
+
MANUAL_PATCHES_STORE[f"transformer.blocks.{i}.norm3.bias"] = ("diff_b", processed_state_dict[norm3_diff_b_key_proc]) # And .bias
|
163 |
+
handled_original_keys.add(f"diffusion_model.{norm3_diff_b_key_proc}")
|
164 |
+
|
165 |
+
|
166 |
+
# --- Handle Top-level LoRAs & Diffs ---
|
167 |
+
top_level_mappings = [
|
168 |
+
# (lora_base_path_proc, diffusers_base_path, lora_suffixes, diffusers_suffixes)
|
169 |
+
("text_embedding", "transformer.condition_embedder.text_embedder", ["0", "2"], ["linear_1", "linear_2"]),
|
170 |
+
("time_embedding", "transformer.condition_embedder.time_embedder", ["0", "2"], ["linear_1", "linear_2"]),
|
171 |
+
("time_projection", "transformer.condition_embedder.time_proj", ["1"], [""]), # Wan has .1, Diffusers has no suffix
|
172 |
+
("head", "transformer.proj_out", ["head"], [""]), # Wan has .head, Diffusers has no suffix
|
173 |
+
]
|
174 |
+
|
175 |
+
for lora_base_proc, diffusers_base, lora_suffixes, diffusers_suffixes in top_level_mappings:
|
176 |
+
for l_suffix, d_suffix in zip(lora_suffixes, diffusers_suffixes):
|
177 |
+
actual_lora_path_proc = f"{lora_base_proc}.{l_suffix}" if l_suffix else lora_base_proc
|
178 |
+
actual_diffusers_path = f"{diffusers_base}.{d_suffix}" if d_suffix else diffusers_base
|
179 |
+
|
180 |
+
lora_down_key_proc = f"{actual_lora_path_proc}.lora_down.weight"
|
181 |
+
lora_up_key_proc = f"{actual_lora_path_proc}.lora_up.weight"
|
182 |
+
diff_b_key_proc = f"{actual_lora_path_proc}.diff_b"
|
183 |
+
diff_w_key_proc = f"{actual_lora_path_proc}.diff"
|
184 |
+
|
185 |
+
if lora_down_key_proc in processed_state_dict and lora_up_key_proc in processed_state_dict:
|
186 |
+
peft_state_dict[f"{actual_diffusers_path}.lora_A.weight"] = processed_state_dict[lora_down_key_proc]
|
187 |
+
peft_state_dict[f"{actual_diffusers_path}.lora_B.weight"] = processed_state_dict[lora_up_key_proc]
|
188 |
+
handled_original_keys.add(f"diffusion_model.{lora_down_key_proc}")
|
189 |
+
handled_original_keys.add(f"diffusion_model.{lora_up_key_proc}")
|
190 |
+
if diff_b_key_proc in processed_state_dict:
|
191 |
+
MANUAL_PATCHES_STORE[f"{actual_diffusers_path}.bias"] = ("diff_b", processed_state_dict[diff_b_key_proc])
|
192 |
+
handled_original_keys.add(f"diffusion_model.{diff_b_key_proc}")
|
193 |
+
if diff_w_key_proc in processed_state_dict:
|
194 |
+
MANUAL_PATCHES_STORE[f"{actual_diffusers_path}.weight"] = ("diff", processed_state_dict[diff_w_key_proc])
|
195 |
+
handled_original_keys.add(f"diffusion_model.{diff_w_key_proc}")
|
196 |
+
|
197 |
# Patch Embedding
|
198 |
patch_emb_diff_b_key = "patch_embedding.diff_b"
|
199 |
+
if patch_emb_diff_b_key in processed_state_dict:
|
200 |
+
MANUAL_PATCHES_STORE["transformer.patch_embedding.bias"] = ("diff_b", processed_state_dict[patch_emb_diff_b_key])
|
201 |
+
handled_original_keys.add(f"diffusion_model.{patch_emb_diff_b_key}")
|
202 |
+
# Assuming .diff might exist for patch_embedding.weight, though not explicitly in your example list
|
203 |
+
patch_emb_diff_w_key = "patch_embedding.diff"
|
204 |
+
if patch_emb_diff_w_key in processed_state_dict:
|
205 |
+
MANUAL_PATCHES_STORE["transformer.patch_embedding.weight"] = ("diff", processed_state_dict[patch_emb_diff_w_key])
|
206 |
+
handled_original_keys.add(f"diffusion_model.{patch_emb_diff_w_key}")
|
207 |
+
|
208 |
+
|
209 |
+
# Log unhandled keys
|
210 |
+
final_unhandled_keys = []
|
211 |
+
for k_orig in original_keys:
|
212 |
+
# Reconstruct the processed key to check if it was actually handled by diff/diff_b or lora A/B logic
|
213 |
+
k_proc = None
|
214 |
+
if k_orig.startswith("diffusion_model."):
|
215 |
+
k_proc = k_orig[len("diffusion_model."):]
|
216 |
+
elif k_orig.startswith("difusion_model."):
|
217 |
+
k_proc = k_orig[len("difusion_model."):]
|
218 |
+
|
219 |
+
if k_orig not in handled_original_keys and (k_proc is None or not any(k_proc.endswith(s) for s in [".lora_down.weight", ".lora_up.weight", ".diff", ".diff_b", ".alpha"])):
|
220 |
+
final_unhandled_keys.append(k_orig)
|
221 |
+
|
222 |
+
if final_unhandled_keys:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
logger.warning(
|
224 |
+
f"The following keys from the Wan 2.1 LoRA checkpoint were not converted to PEFT LoRA A/B format "
|
225 |
+
f"nor identified as manual diff patches: {final_unhandled_keys}."
|
226 |
)
|
227 |
|
228 |
+
if not peft_state_dict and not MANUAL_PATCHES_STORE:
|
229 |
+
logger.warning("No valid LoRA A/B weights or manual diff patches found after conversion.")
|
|
|
|
|
|
|
|
|
|
|
230 |
|
231 |
+
return peft_state_dict
|
232 |
|
233 |
+
def apply_manual_diff_patches(pipe_model_component, patches_store, strength_model=1.0):
|
234 |
+
if not patches_store:
|
|
|
|
|
|
|
|
|
235 |
logger.info("No manual diff patches to apply.")
|
236 |
return
|
237 |
|
238 |
+
logger.info(f"Applying {len(patches_store)} manual diff patches...")
|
239 |
+
for target_key, (patch_type, diff_tensor) in patches_store.items():
|
|
|
|
|
|
|
|
|
240 |
try:
|
241 |
+
module_path, param_name = target_key.rsplit('.', 1)
|
242 |
+
module = pipe_model_component.get_submodule(module_path)
|
243 |
+
original_param = getattr(module, param_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
|
245 |
+
if original_param.shape != diff_tensor.shape:
|
246 |
+
logger.warning(f"Shape mismatch for {target_key}: model {original_param.shape}, LoRA {diff_tensor.shape}. Skipping patch.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
continue
|
248 |
|
249 |
+
with torch.no_grad():
|
250 |
+
# Ensure diff_tensor is on the same device and dtype as the original parameter
|
251 |
+
diff_tensor_casted = diff_tensor.to(device=original_param.device, dtype=original_param.dtype)
|
252 |
+
scaled_diff = diff_tensor_casted * strength_model
|
253 |
+
original_param.add_(scaled_diff)
|
254 |
+
# logger.info(f"Applied {patch_type} to {target_key} with strength {strength_model}")
|
255 |
+
except AttributeError:
|
256 |
+
logger.warning(f"Could not find parameter {target_key} in the model component. Skipping patch.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
except Exception as e:
|
258 |
+
logger.error(f"Error applying patch to {target_key}: {e}")
|
259 |
+
logger.info("Finished applying manual diff patches.")
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
|
261 |
# --- Model Loading ---
|
262 |
logger.info(f"Loading VAE for {MODEL_ID}...")
|
|
|
290 |
from safetensors.torch import load_file as load_safetensors
|
291 |
raw_lora_state_dict = load_safetensors(causvid_path)
|
292 |
|
|
|
293 |
peft_state_dict = _custom_convert_non_diffusers_wan_lora_to_diffusers(raw_lora_state_dict)
|
294 |
|
|
|
295 |
if peft_state_dict:
|
296 |
pipe.load_lora_weights(
|
297 |
+
peft_state_dict,
|
298 |
adapter_name="causvid_lora"
|
299 |
)
|
300 |
logger.info("PEFT LoRA A/B weights loaded.")
|
301 |
else:
|
302 |
logger.warning("No PEFT-compatible LoRA weights found after conversion.")
|
303 |
|
304 |
+
lora_strength = 1.0
|
305 |
+
apply_manual_diff_patches(pipe.transformer, MANUAL_PATCHES_STORE, strength_model=lora_strength)
|
306 |
logger.info("Manual diff_b/diff patches applied.")
|
307 |
|
308 |
|