Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,514 Bytes
5f364b5 f4cf641 c103ac7 f4cf641 5f364b5 c103ac7 5f364b5 f4cf641 12d6cf5 5f364b5 afdfe21 f4cf641 afdfe21 5f364b5 afdfe21 5f364b5 afdfe21 f4cf641 c103ac7 f4cf641 afdfe21 5f364b5 c103ac7 5f364b5 afdfe21 f4cf641 5f364b5 f4cf641 c103ac7 5f364b5 5158fc3 8249703 afdfe21 5f364b5 afdfe21 f4cf641 c103ac7 2715b15 f4cf641 8575388 c103ac7 8575388 f4cf641 8575388 f4cf641 c103ac7 f4cf641 c103ac7 f4cf641 c103ac7 f4cf641 8575388 c103ac7 f4cf641 c103ac7 f4cf641 c103ac7 f4cf641 c103ac7 8575388 c103ac7 f4cf641 12d6cf5 f4cf641 c103ac7 f4cf641 c103ac7 f4cf641 afdfe21 5f364b5 c103ac7 f4cf641 8575388 f4cf641 8575388 afdfe21 f4cf641 afdfe21 f4cf641 8575388 f4cf641 8575388 c103ac7 12d6cf5 c103ac7 12d6cf5 f4cf641 afdfe21 5f364b5 f4cf641 5f364b5 f4cf641 8575388 f4cf641 8575388 1d3a31b 5f364b5 5158fc3 8575388 afdfe21 5f364b5 f4cf641 5f364b5 8575388 5f364b5 c103ac7 f4cf641 8575388 f4cf641 8575388 5f364b5 c103ac7 f4cf641 d5cf532 c103ac7 8575388 c103ac7 f4cf641 12d6cf5 f4cf641 8575388 f4cf641 8575388 f4cf641 5f364b5 f4cf641 5f364b5 8575388 5f364b5 8575388 5f364b5 8575388 5f364b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import torch
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
from transformers import CLIPVisionModel
import gradio as gr
import tempfile
import spaces
from huggingface_hub import hf_hub_download
import logging
import numpy as np
from PIL import Image
# --- Global Model Loading & LoRA Handling ---
MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"
LORA_REPO_ID = "Kijai/WanVideo_comfy"
LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# --- Model Loading ---
logger.info(f"Loading Image Encoder for {MODEL_ID}...")
image_encoder = CLIPVisionModel.from_pretrained(
MODEL_ID,
subfolder="image_encoder",
torch_dtype=torch.float32 # Using float32 for image encoder as sometimes bfloat16/float16 can be problematic
)
logger.info(f"Loading VAE for {MODEL_ID}...")
vae = AutoencoderKLWan.from_pretrained(
MODEL_ID,
subfolder="vae",
torch_dtype=torch.float32 # Using float32 for VAE for precision
)
logger.info(f"Loading Pipeline {MODEL_ID}...")
pipe = WanImageToVideoPipeline.from_pretrained(
MODEL_ID,
vae=vae,
image_encoder=image_encoder,
torch_dtype=torch.bfloat16 # Main pipeline can use bfloat16 for speed/memory
)
flow_shift = 8.0
pipe.scheduler = UniPCMultistepScheduler.from_config(
pipe.scheduler.config, flow_shift=flow_shift
)
logger.info("Moving pipeline to CUDA...")
pipe.to("cuda")
# --- LoRA Loading ---
logger.info(f"Downloading LoRA {LORA_FILENAME} from {LORA_REPO_ID}...")
causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
logger.info("Loading LoRA weights...")
pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
logger.info("Setting LoRA adapter...")
pipe.set_adapters(["causvid_lora"], adapter_weights=[1.0])
# --- Constants for Dimension Calculation ---
MOD_VALUE = 32
MOD_VALUE_H = MOD_VALUE_W = MOD_VALUE
DEFAULT_H_SLIDER_VALUE = 512
DEFAULT_W_SLIDER_VALUE = 896
# New fixed max_area for the calculation formula
NEW_FORMULA_MAX_AREA = float(480 * 832)
SLIDER_MIN_H = 128
SLIDER_MAX_H = 896
SLIDER_MIN_W = 128
SLIDER_MAX_W = 896
def _calculate_new_dimensions_wan(pil_image: Image.Image, mod_val: int, calculation_max_area: float,
min_slider_h: int, max_slider_h: int,
min_slider_w: int, max_slider_w: int,
default_h: int, default_w: int) -> tuple[int, int]:
orig_w, orig_h = pil_image.size
if orig_w <= 0 or orig_h <= 0: # Changed to <= 0 for robustness
logger.warning(f"Uploaded image has non-positive width or height ({orig_w}x{orig_h}). Using default slider dimensions.")
return default_h, default_w
aspect_ratio = orig_h / orig_w
sqrt_h_term = np.sqrt(calculation_max_area * aspect_ratio)
sqrt_w_term = np.sqrt(calculation_max_area / aspect_ratio)
calc_h = round(sqrt_h_term) // mod_val * mod_val
calc_w = round(sqrt_w_term) // mod_val * mod_val
calc_h = mod_val if calc_h < mod_val else calc_h
calc_w = mod_val if calc_w < mod_val else calc_w
effective_min_h = min_slider_h
effective_min_w = min_slider_w
effective_max_h_from_slider = (max_slider_h // mod_val) * mod_val
effective_max_w_from_slider = (max_slider_w // mod_val) * mod_val
new_h = int(np.clip(calc_h, effective_min_h, effective_max_h_from_slider))
new_w = int(np.clip(calc_w, effective_min_w, effective_max_w_from_slider))
logger.info(f"Auto-dim: Original {orig_w}x{orig_h} (AR: {aspect_ratio:.2f}). Max Area for calc: {calculation_max_area}.")
logger.info(f"Auto-dim: Sqrt terms HxW: {sqrt_h_term:.0f}x{sqrt_w_term:.0f}. Calculated (round(sqrt_term)//{mod_val}*{mod_val}): {calc_h}x{calc_w}.")
logger.info(f"Auto-dim: Clamped HxW: {new_h}x{new_w} (Effective H_range:[{effective_min_h}-{effective_max_h_from_slider}], Effective W_range:[{effective_min_w}-{effective_max_w_from_slider}]).")
return new_h, new_w
def handle_image_upload_for_dims_wan(uploaded_pil_image: Image.Image | None, current_h_val: int, current_w_val: int):
if uploaded_pil_image is None:
logger.info("Image cleared. Resetting dimensions to default slider values.")
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
try:
new_h, new_w = _calculate_new_dimensions_wan(
uploaded_pil_image,
MOD_VALUE,
NEW_FORMULA_MAX_AREA, # Use the globally defined max_area for the new formula
SLIDER_MIN_H, SLIDER_MAX_H,
SLIDER_MIN_W, SLIDER_MAX_W,
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE
)
return gr.update(value=new_h), gr.update(value=new_w)
except Exception as e:
logger.error(f"Error auto-adjusting H/W from image: {e}", exc_info=True)
# Fallback to default slider values on error, as in the original code
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
# --- Gradio Interface Function ---
@spaces.GPU
def generate_video(input_image: Image.Image, prompt: str, negative_prompt: str,
height: int, width: int, duration_seconds: float, # Changed from num_frames
guidance_scale: float, steps: int,
progress=gr.Progress(track_tqdm=True)): # Removed fps_for_conditioning_and_export
if input_image is None:
raise gr.Error("Please upload an input image.")
# Constants for frame calculation
FIXED_FPS = 24
MIN_FRAMES_MODEL = 8 # Based on original num_frames_input slider min
MAX_FRAMES_MODEL = 81 # Based on original num_frames_input slider max
logger.info("Starting video generation...")
logger.info(f" Input Image: Uploaded (Original size: {input_image.size if input_image else 'N/A'})")
logger.info(f" Prompt: {prompt}")
logger.info(f" Negative Prompt: {negative_prompt if negative_prompt else 'None'}")
logger.info(f" Target Output Height: {height}, Target Output Width: {width}")
target_height = int(height)
target_width = int(width)
# duration_seconds is already float
guidance_scale_val = float(guidance_scale)
steps_val = int(steps)
# Calculate number of frames based on duration and fixed FPS
num_frames_for_pipeline = int(round(duration_seconds * FIXED_FPS))
# Clamp num_frames to be within model's supported range
num_frames_for_pipeline = max(MIN_FRAMES_MODEL, min(MAX_FRAMES_MODEL, num_frames_for_pipeline))
# Ensure at least MIN_FRAMES_MODEL if rounding leads to a very small number (or zero)
if num_frames_for_pipeline < MIN_FRAMES_MODEL:
num_frames_for_pipeline = MIN_FRAMES_MODEL
logger.info(f" Duration: {duration_seconds:.1f}s, Fixed FPS (conditioning & export): {FIXED_FPS}")
logger.info(f" Calculated Num Frames: {num_frames_for_pipeline} (clamped to [{MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL}])")
logger.info(f" Guidance Scale: {guidance_scale_val}, Steps: {steps_val}")
# Ensure dimensions are compatible.
if target_height % MOD_VALUE_H != 0:
logger.warning(f"Height {target_height} is not a multiple of {MOD_VALUE_H}. Adjusting...")
target_height = (target_height // MOD_VALUE_H) * MOD_VALUE_H
if target_width % MOD_VALUE_W != 0:
logger.warning(f"Width {target_width} is not a multiple of {MOD_VALUE_W}. Adjusting...")
target_width = (target_width // MOD_VALUE_W) * MOD_VALUE_W
target_height = max(MOD_VALUE_H, target_height if target_height > 0 else MOD_VALUE_H)
target_width = max(MOD_VALUE_W, target_width if target_width > 0 else MOD_VALUE_W)
resized_image = input_image.resize((target_width, target_height))
logger.info(f" Input image resized to: {resized_image.size} for pipeline input.")
with torch.inference_mode():
output_frames_list = pipe(
image=resized_image,
prompt=prompt,
negative_prompt=negative_prompt,
height=target_height,
width=target_width,
num_frames=num_frames_for_pipeline, # Use calculated and clamped num_frames
guidance_scale=guidance_scale_val,
num_inference_steps=steps_val,
generator=torch.Generator(device="cuda").manual_seed(0)
).frames[0]
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
video_path = tmpfile.name
export_to_video(output_frames_list, video_path, fps=FIXED_FPS) # Use fixed FPS for export
logger.info(f"Video successfully generated and saved to {video_path}")
return video_path
# --- Gradio UI Definition ---
default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
default_negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards, watermark, text, signature"
penguin_image_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/penguin.png"
with gr.Blocks() as demo:
gr.Markdown(f"""
# Fast 4 steps Wan 2.1 I2V (14B) with CausVid LoRA
""")
with gr.Row():
with gr.Column():
input_image_component = gr.Image(type="pil", label="Input Image (will be resized to target H/W)")
prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v, lines=3)
duration_seconds_input = gr.Slider(minimum=0.4, maximum=3.3, step=0.1, value=1.7, label="Duration (seconds)", info="The CausVid LoRA was trained on 24fps, Wan has 81 maximum frames limit, limiting the maximum to 3.3s")
with gr.Accordion("Advanced Settings", open=False):
negative_prompt_input = gr.Textbox(
label="Negative Prompt (Optional)",
value=default_negative_prompt,
lines=3
)
with gr.Row():
height_input = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"Output Height (multiple of {MOD_VALUE})")
width_input = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"Output Width (multiple of {MOD_VALUE})")
steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=4, label="Inference Steps")
guidance_scale_input = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="Guidance Scale", visible=False)
generate_button = gr.Button("Generate Video", variant="primary")
with gr.Column():
video_output = gr.Video(label="Generated Video", interactive=False)
input_image_component.upload(
fn=handle_image_upload_for_dims_wan,
inputs=[input_image_component, height_input, width_input],
outputs=[height_input, width_input]
)
input_image_component.clear(
fn=handle_image_upload_for_dims_wan,
inputs=[input_image_component, height_input, width_input],
outputs=[height_input, width_input]
)
inputs_for_click_and_examples = [
input_image_component,
prompt_input,
negative_prompt_input,
height_input,
width_input,
duration_seconds_input,
guidance_scale_input,
steps_slider
]
generate_button.click(
fn=generate_video,
inputs=inputs_for_click_and_examples,
outputs=video_output
)
gr.Examples(
examples=[
[penguin_image_url, "a penguin playfully dancing in the snow, Antarctica", default_negative_prompt, 896, 512, 2, 1.0, 4],
["https://huggingface.co/datasets/diffusers/docs-images/resolve/main/i2vgen_xl_images/img_0001.jpg", "the frog jumps around", default_negative_prompt, 448, 832, 2, 1.0, 4],
],
inputs=inputs_for_click_and_examples,
outputs=video_output,
fn=generate_video,
cache_examples="lazy"
)
if __name__ == "__main__":
demo.queue().launch(share=True, debug=True) |