File size: 10,981 Bytes
5f364b5
f4cf641
 
 
5f364b5
 
 
f4cf641
5f364b5
f4cf641
 
12d6cf5
5f364b5
afdfe21
f4cf641
afdfe21
 
5f364b5
afdfe21
 
 
5f364b5
afdfe21
f4cf641
 
 
 
 
 
 
afdfe21
5f364b5
 
 
f4cf641
5f364b5
afdfe21
f4cf641
5f364b5
 
f4cf641
 
5f364b5
5158fc3
8249703
 
 
afdfe21
5f364b5
afdfe21
 
 
 
 
f4cf641
 
 
 
 
12d6cf5
2715b15
f4cf641
12d6cf5
 
f4cf641
 
 
09bcd50
f4cf641
09bcd50
f4cf641
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12d6cf5
 
f4cf641
 
 
 
 
 
 
 
 
 
 
12d6cf5
f4cf641
 
 
 
 
12d6cf5
f4cf641
 
 
 
 
 
 
 
 
afdfe21
5f364b5
 
f4cf641
 
 
 
 
 
 
 
afdfe21
f4cf641
afdfe21
 
f4cf641
 
 
 
 
 
5f364b5
f4cf641
 
 
 
12d6cf5
 
 
 
 
 
 
 
 
 
 
 
f4cf641
 
 
afdfe21
5f364b5
f4cf641
5f364b5
 
f4cf641
 
5f364b5
f4cf641
 
12d6cf5
1d3a31b
5f364b5
 
 
5158fc3
12d6cf5
afdfe21
5f364b5
 
 
f4cf641
 
 
 
5f364b5
 
f4cf641
 
5f364b5
 
f4cf641
5f364b5
 
 
f4cf641
 
 
 
 
 
 
 
 
 
 
 
 
687329c
 
f4cf641
 
5f364b5
 
 
 
f4cf641
 
d5cf532
f4cf641
12d6cf5
f4cf641
 
 
 
 
 
 
 
 
 
 
 
 
 
5f364b5
 
 
f4cf641
5f364b5
 
 
 
 
12d6cf5
5f364b5
f4cf641
5f364b5
 
afdfe21
5f364b5
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import torch
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video, load_image
from transformers import CLIPVisionModel
import gradio as gr
import tempfile
import os
import spaces # Assuming this is for Hugging Face Spaces GPU decorator
from huggingface_hub import hf_hub_download
import logging
import numpy as np
from PIL import Image

# --- Global Model Loading & LoRA Handling ---
MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"
LORA_REPO_ID = "Kijai/WanVideo_comfy"
LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# --- Model Loading ---
logger.info(f"Loading Image Encoder for {MODEL_ID}...")
image_encoder = CLIPVisionModel.from_pretrained(
    MODEL_ID,
    subfolder="image_encoder",
    torch_dtype=torch.float32
)

logger.info(f"Loading VAE for {MODEL_ID}...")
vae = AutoencoderKLWan.from_pretrained(
    MODEL_ID,
    subfolder="vae",
    torch_dtype=torch.float32
)
logger.info(f"Loading Pipeline {MODEL_ID}...")
pipe = WanImageToVideoPipeline.from_pretrained(
    MODEL_ID,
    vae=vae,
    image_encoder=image_encoder,
    torch_dtype=torch.bfloat16
)
flow_shift = 8.0
pipe.scheduler = UniPCMultistepScheduler.from_config(
    pipe.scheduler.config, flow_shift=flow_shift
)
logger.info("Moving pipeline to CUDA...")
pipe.to("cuda")

# --- LoRA Loading ---
logger.info(f"Downloading LoRA {LORA_FILENAME} from {LORA_REPO_ID}...")
causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)

logger.info("Loading LoRA weights...")
pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
logger.info("Setting LoRA adapter...")
pipe.set_adapters(["causvid_lora"], adapter_weights=[1.0])

MOD_VALUE = 128 
MOD_VALUE_H = MOD_VALUE_W = MOD_VALUE

DEFAULT_H_SLIDER_VALUE = 384 # (3 * 128)
DEFAULT_W_SLIDER_VALUE = 640 # (5 * 128)
DEFAULT_TARGET_AREA = float(DEFAULT_H_SLIDER_VALUE * DEFAULT_W_SLIDER_VALUE)

SLIDER_MIN_H = 128
SLIDER_MAX_H = 512 
SLIDER_MIN_W = 128
SLIDER_MAX_W = 854

def _calculate_new_dimensions_wan(pil_image: Image.Image, mod_val: int, target_area: float,
                                 min_h: int, max_h: int, min_w: int, max_w: int,
                                 default_h: int, default_w: int) -> tuple[int, int]:
    orig_w, orig_h = pil_image.size

    if orig_w == 0 or orig_h == 0:
        logger.warning("Uploaded image has zero width or height. Using default slider dimensions.")
        return default_h, default_w

    aspect_ratio = orig_h / orig_w

    ideal_h = np.sqrt(target_area * aspect_ratio)
    ideal_w = np.sqrt(target_area / aspect_ratio)

    calc_h = round(ideal_h / mod_val) * mod_val
    calc_w = round(ideal_w / mod_val) * mod_val

    calc_h = mod_val if calc_h < mod_val else calc_h # Ensure at least one mod_val unit
    calc_w = mod_val if calc_w < mod_val else calc_w # Ensure at least one mod_val unit

    new_h = int(np.clip(calc_h, min_h, max_h))
    new_w = int(np.clip(calc_w, min_w, max_w))

    logger.info(f"Auto-dim: Original {orig_w}x{orig_h} (AR: {aspect_ratio:.2f}). Target Area: {target_area}.")
    logger.info(f"Auto-dim: Ideal HxW: {ideal_h:.0f}x{ideal_w:.0f}. Rounded (step {mod_val}): {calc_h}x{calc_w}.")
    logger.info(f"Auto-dim: Clamped HxW: {new_h}x{new_w} (H_range:[{min_h}-{max_h}], W_range:[{min_w}-{max_w}]).")

    return new_h, new_w

def handle_image_upload_for_dims_wan(uploaded_pil_image: Image.Image | None, current_h_val: int, current_w_val: int):
    if uploaded_pil_image is None:
        logger.info("Image cleared. Resetting dimensions to default slider values.")
        return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
    try:
        new_h, new_w = _calculate_new_dimensions_wan(
            uploaded_pil_image,
            MOD_VALUE, # Use the globally determined MOD_VALUE
            DEFAULT_TARGET_AREA,
            SLIDER_MIN_H, SLIDER_MAX_H,
            SLIDER_MIN_W, SLIDER_MAX_W,
            DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE
        )
        return gr.update(value=new_h), gr.update(value=new_w)
    except Exception as e:
        logger.error(f"Error auto-adjusting H/W from image: {e}", exc_info=True)
        return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)


# --- Gradio Interface Function ---
@spaces.GPU # type: ignore
def generate_video(input_image: Image.Image, prompt: str, negative_prompt: str,
                   height: int, width: int, num_frames: int,
                   guidance_scale: float, steps: int, fps_for_conditioning_and_export: int,
                   progress=gr.Progress(track_tqdm=True)):
    if input_image is None:
        raise gr.Error("Please upload an input image.")

    logger.info("Starting video generation...")
    logger.info(f"  Input Image: Uploaded (Original size: {input_image.size if input_image else 'N/A'})")
    logger.info(f"  Prompt: {prompt}")
    logger.info(f"  Negative Prompt: {negative_prompt if negative_prompt else 'None'}")
    logger.info(f"  Target Output Height: {height}, Target Output Width: {width}")
    logger.info(f"  Num Frames: {num_frames}, FPS for conditioning & export: {fps_for_conditioning_and_export}")
    logger.info(f"  Guidance Scale: {guidance_scale}, Steps: {steps}")

    target_height = int(height)
    target_width = int(width)
    num_frames = int(num_frames)
    fps_val = int(fps_for_conditioning_and_export)
    guidance_scale_val = float(guidance_scale)
    steps_val = int(steps)

    # Ensure dimensions are compatible (already handled by slider steps and auto-adjustment)
    if target_height % MOD_VALUE_H != 0:
        logger.warning(f"Height {target_height} is not a multiple of {MOD_VALUE_H}. Adjusting...")
        target_height = (target_height // MOD_VALUE_H) * MOD_VALUE_H
    if target_width % MOD_VALUE_W != 0:
        logger.warning(f"Width {target_width} is not a multiple of {MOD_VALUE_W}. Adjusting...")
        target_width = (target_width // MOD_VALUE_W) * MOD_VALUE_W
    
    target_height = max(MOD_VALUE_H, target_height) # Ensure minimum size
    target_width = max(MOD_VALUE_W, target_width)   # Ensure minimum size


    resized_image = input_image.resize((target_width, target_height))
    logger.info(f"  Input image resized to: {resized_image.size} for pipeline input.")

    with torch.inference_mode():
        output_frames_list = pipe(
            image=resized_image,
            prompt=prompt,
            negative_prompt=negative_prompt,
            height=target_height,
            width=target_width,
            num_frames=num_frames,
            guidance_scale=guidance_scale_val,
            num_inference_steps=steps_val,
            generator=torch.Generator(device="cuda").manual_seed(0)
        ).frames[0]

    with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
        video_path = tmpfile.name

    export_to_video(output_frames_list, video_path, fps=fps_val)
    logger.info(f"Video successfully generated and saved to {video_path}")
    return video_path

# --- Gradio UI Definition ---
default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
default_negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards, watermark, text, signature"
penguin_image_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/penguin.png"

with gr.Blocks() as demo:
    gr.Markdown(f"""
    # Image-to-Video with Wan 2.1 I2V (14B) + CausVid LoRA
    Powered by `diffusers` and `{MODEL_ID}`.
    Model is loaded into memory when the app starts. This might take a few minutes.
    Ensure you have a GPU with sufficient VRAM (e.g., ~24GB+ for these default settings).
    Output Height and Width must be multiples of **{MOD_VALUE}**. Uploading an image will suggest dimensions based on its aspect ratio and a target area.
    """)
    with gr.Row():
        with gr.Column(scale=2):
            input_image_component = gr.Image(type="pil", label="Input Image (will be resized to target H/W)")
            prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v, lines=3)

            with gr.Accordion("Advanced Settings", open=False):
                negative_prompt_input = gr.Textbox(
                    label="Negative Prompt (Optional)",
                    value=default_negative_prompt,
                    lines=3
                )
                with gr.Row():
                    height_input = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"Output Height (multiple of {MOD_VALUE})")
                    width_input = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"Output Width (multiple of {MOD_VALUE})")
                with gr.Row():
                    num_frames_input = gr.Slider(minimum=8, maximum=81, step=1, value=41, label="Number of Frames")
                    fps_input = gr.Slider(minimum=5, maximum=30, step=1, value=24, label="FPS (for conditioning & export)")
                steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=4, label="Inference Steps")
                guidance_scale_input = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="Guidance Scale")

            generate_button = gr.Button("Generate Video", variant="primary")

        with gr.Column(scale=3):
            video_output = gr.Video(label="Generated Video", interactive=False)

    input_image_component.upload(
        fn=handle_image_upload_for_dims_wan,
        inputs=[input_image_component, height_input, width_input],
        outputs=[height_input, width_input]
    )

    inputs_for_click_and_examples = [
        input_image_component,
        prompt_input,
        negative_prompt_input,
        height_input,
        width_input,
        num_frames_input,
        guidance_scale_input,
        steps_slider,
        fps_input
    ]

    generate_button.click(
        fn=generate_video,
        inputs=inputs_for_click_and_examples,
        outputs=video_output
    )

    gr.Examples(
        examples=[
            [penguin_image_url, "a penguin playfully dancing in the snow, Antarctica", default_negative_prompt, DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE, 25, 1.0, 4, 16],
        ],
        inputs=inputs_for_click_and_examples,
        outputs=video_output,
        fn=generate_video,
        cache_examples=False
    )

if __name__ == "__main__":
    demo.queue().launch(share=True, debug=True)